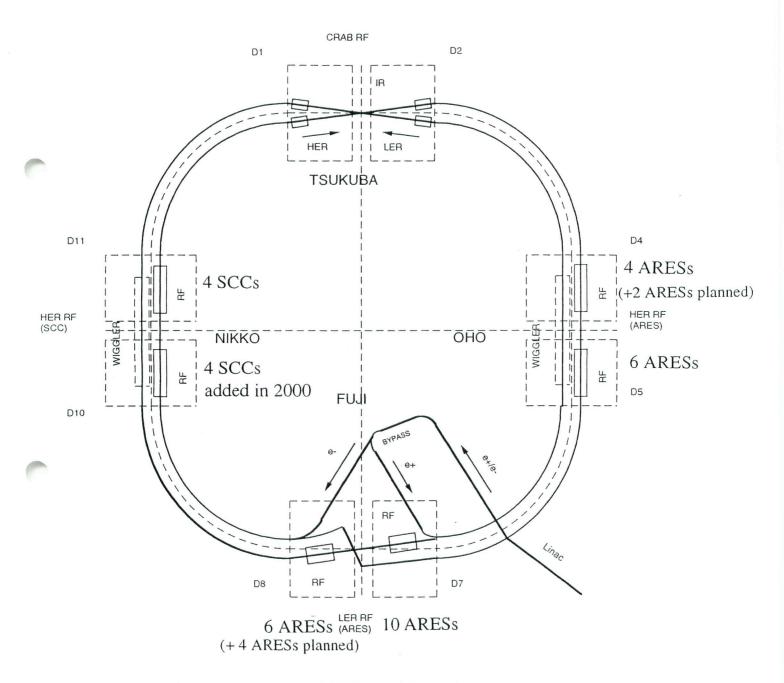
RF Sytem Overview


E. Ezura

XEX

KEKB Machine Advisory Committee Review

February 23, 2001

4 SC cavities were added in the summer of 2000.

Arrangement of RF cavities along the ring

■ RF-Related Machine Parameters

		LER	HER
Beam energy	(GeV)	3.5	8.0
Beam current	(A)	2.6	1.1
Bunch length	(mm)	4	4
Synchrotron tune		0.01 - 0.02	0.01 - 0.02
RF voltage	(MV)	4.9 - 9.4	8.7 - 16.2
RF frequency	(MHz)	508.887	
Damping time	(ms)	43 / 23*	23
Radiation power	(MW)	2.1 / 4.0*	3.8
HOM loss	(MW)	0.57	0.14
Total beam power	(MW)	2.7 / 4.5*	4.0

*with wigglers for LER

■ RF Parameters for the Maximum Voltage

Ring		LER	HER
		w/wiggler	hybrid
Cavity		ARES	SCC+ARES
Relative phase	(deg.)	-	10
RF voltage	(MV)	10	17.9
Number of cavities		20	8 + 12
R/Q	(Ω)	14.8	93 / 14.8
Q_0		1.1x10 ⁵	$>1 \times 10^9 / 1.1 \times 10^5$
Q_{L}	$(x10^4)$	3.0	8.0 / 3.0
Input coupling		2.7	- /2.7
Cavity voltage	(MV/cav.)	0.5	1.5 / 0.5
Input power	(kW/cav.)	375	250 / 340
Wall loss	(kW/cav.)	154	- / 154
Beam power	(kW/cav.)	221	250 / 250
Number of klystrons		10	8 / 6
Klystron power	(kW)	~810	~270 / ~740

■ Number of Operating Cavities

Period	98/12	99/10	00/10~	Design
	~99/07	~00/07		
LER				
ARES	10~12	14~16	14	20
(installed)	(12)	(16)	(16)	
RF voltage	4MV	5~6MV	6MV	5~10MV
HER				
ARES	6	10	8~10	12
(installed)	(6)	(10)	(10)	
SCC	4	4	5~6	8
(installed)	(4)	(4)	(8)	
RF voltage	8MV	9~11MV	11MV	8~16MV

Design values of RF voltage per cavity are 0.5MV/ARES and 1.5MV/SCC.

Parameters Achieved by Feb. 2001

	LER	HER
Beam current (mA)	860 (2600)	650 (1100)
Operating RF Voltage	6 (5~10)	11 (8~16)
(MV) NC/SC		3.24 / 7.76
No. of cavities	14 (20)	NC: 10 (12)
		SC: 6 (8)
Operating Voltage / cav.	0.43 (0.5)	NC: 0.32 (0.5)
(MV)		SC: 1.3 (1.5)
Conditioned up to (MV)	0.5 (0.5)	NC: 0.5 (0.5)
		SC: >2.0 (1.5)
Total beam power (MW)	1.8 (4.5)	2.3 (4.0)
Beam power / cav. (kW)	130 (225)	NC: 130 (170)
		SC: 380 (250)
Beam power / cav. (kW)	180 (225)	NC: 200 (170)
(by shifting RF phase)		
HOM power / cav. (kW)	~1	
		SC: 3.25 (5.0)

Numbers in () are design values.

Stored Beam Current

- No more than 860 mA has been intended to store in LER due to beam blow-up.
- Beam current in HER has been limited due to heating of movable masks. They will be replaced with improved masks.
- So far, beam current has never been limited by RF system.
- RF system can support more beam current as follows:

	LER	HER
Present RF system	1300mA	900mA
	(14NC)	(10NC+6SC)
When sidelined	1500mA	1000mA
cavities are back	(16NC)	(10NC+8SC)
With more	1800mA	
conditioning	(16NC)	
With 6 more ARES's	2600mA	1100mA
added	(20NC)	(12NC+8SC)

Trips, faults and system improvements

- RF trip rate: ~1 / day (trip with beam loss: 1 / 2~3days)
 Main causes of trips:
 reflection from cavity, large power from coupling cavity, arcing in input coupler, SCC quench, false crowbar work, etc.
- Loss time in physics run due to RF troubles
 Apr. 2000~Jul. 2000 23 hours / 4 months
 Oct. 2000~Feb. 2001 *47 hours / 4 months
 *(including 35 hours for replacing an ARES input coupler)
 Total loss time due to all RF troubles is only 70 hours in 8 months physics run.
- A coaxial-to-waveguide transition of input coupler was damaged by arcing. Arc detectors which look at the air side of the window are being prepared and will be mounted in this summer.
- Rate of false crowbar work has increased (2~3 times/month). Conditioning of all ignitrons in the crowbar is necessary in this summer shutdown.
- To protect vacuum components from being hit by the beam, a fast beam-abort request signal will be prepared.
 The signal will be sent out when detecting a large beamphase shift resulted from RF stations trip.

Main work to do

(1) ARES Installation

- · 26 out of 32 ARESs planned have been installed and are now reliably operating.
- 6 ARESs to be added, 4 to LER and 2 to HER, have already been manufactured, fully processed and are ready for installation.
- Present 16 ARESs can support the LER beam current of 1.5A.
- Time of ARES installation depends on the rate of beam-current increase and the financial condition.

(2) Construction of SCC high-power test station

- Former SCC high-power test station was converted into KEKB D10-D station in last summer.
- · New SCC test station is essential for maintenance of SC accelerating cavities and for developing SC CRAB cavities.
- · Its construction is expected at D10 in the fiscal year 2001.

Summary

- RF system has been operating very reliably.
 Loss time due to all RF troubles is small, 70 hours in 8 months physics run.
- Up to now, RF system has not limited stored beam currents of both LER and HER.