Movable Mask Issues

- History of Movable Mask System -

Y.Suetsugu, N.Akasaka, T.Kageyama, Y.Takeuchi, K.Kanazawa and K.Satoh

23/Feb/2001

Contents

- Introduction
- Ver.1 (original mask)
- Ver.2
- Ver.3
- Ver.4 } (brand-new mask)
- Summary

Purpose of movable mask (collimator)

Protect the BELLE detector against

off-momentum particles particles with a large betatron oscillation

Driginal mask location in the ring

Location on the lattice diagram

KEN SEFEMBUSY

Histories of masks

Ver.1(original mask)

Vacuum side

Ver.1 Structure (cross section)

Ver.1(Ver.2, 3) Setup in the tunnel

Inside of beam chamber (HER)

Ver.1 Troubles (began at the beam current > 500 mA)

(1) Damage of sliding the shield fingers

Fingers were broken (melted) and welded to the stem.

(2) Excess heating

Depending on the buch fill pattern and the mask position, the bellows temperature increased abnormally. Vacuum leak

(3) Arcing

Arcing occured between the stem and the spacer. Broken fingers became a sharp electrode for discharge.

→ Vacuum leak

(4) Excitation of beam oscillation

Strong synchrotron oscillation was excited.

(5) Digging of mask head

Ver.1 Broken shield finger

Ver.1 Excess heating

Bunch fill pattern dependence of mask temperature

Mask position dependence of mask temperature

Ver.1 Arcing between spacer and stem

Ver.1 Grooves on mask head

Cu-W mask head

Ver.1 Causes of troubles

Ver.1 Trapped mode

A example of mode calculation using MAFIA code

Electric field

Magnetic field

Ver 1 Countermeasures

(1) Too weak shield finger

- (3) Resonance structure
- (4) High Q trapped mode

(5) Digging of mask head —> Change of mask head material CuW --> Cu

Ver.1 Countermeasures for the time being

Thermometer (PtR) at bellows pleats

Cooling by a blower

(Platinum resistance thermometer)

Ver.2 (prepared to meet an immediate need)

Features

- Low current density at the sliding shield finger
 (Stem diameter 16 mm --> 36 mm)
- Double sliding shield finger

But

•Q factor is still high (~2000) RF properties are the same as Ver.1

Ver.2 Troubles

When the Ver.2 masks were approaced to the beam, a strong synchrotron oscillation was excited.

Limit the current

All Ver.2 masks were set at full the open position.

Arcing occured between the old stem (inside of collar) and the edge of spacer.

Vacuum leak!

Ver.2 Vacuum leak Arcing between the old stem and spacer

All Ver.2 masks were immediately removed.

(Very short-lived mask)

Ver.3.0 - 3.2 (After all, a fillar until new masks are prepared)

Ver.3.0

Features

- Low current density at sliding shield finger (around spacer)
- Double shield finger
- *Low Q (~600) compared to Ver.1 with SUS plate
- Existing chamber is available
- *Cu mask head (CuW --> Cu)

Ver.3.0 Troubles

The Q-factor was still too high.

- A synchrotoron oscillation was excited again.
 - COD in a bunch train was observed.

The mask head was set at the full open position.

Ver.3.1 and Ver.3.2 masks with RF damping structure were developed.

Masks with HOM damper

Features

- Basic structure is the same as Ver.3.0.
- •HOM damper (SiC) is equiped.

Low Q (~40)

In calculation, the input power of SiC is reasonable unless the frequency of a trapped mode and that generated by the beam are mached.

Ver.3.1 Troubles

Larger input power than expected

~500 W/SiC at 600 mA (LER)

The temperature increased monotonically as the mask nead approached the beam.

$$\longrightarrow$$
 Not a resononace \longrightarrow

The SiC is absoribing HOM generated at the mask itself.

KEN BEFERRING

Ver.3.1 Troubles

An SiC has broken

After the operation at 700 mA for about 2 monthes, one SiC was found to be broken.

Before installation? Too high input power?

LER beam current was limitted at 500 W/SiC (larger than the past achievement)

To play it safe, Ver.3.1 cannot be usedfor LER anymore.

> **∨** New masks Ver.4, 5

Ver.3.2 (temporally prepared for HER vertical)

Ver.3.2

(Before attaching sliding shield finger)

Features

- Basic structure is the same as Ver.3.1
- The height of Sic was shorten to half 30 mm --> 15 mm

Now HER beam current was limitted at

Maximu input power < 250 W/SiC

Ver.3.2 Troubles

Groove on the mask head (Cu)

The head has melted. The whisker was objecting the beam.

Groove on mask head

Possible Cause

(1) Abrupt change of orbit

Setting of a abnormal bump

Vertical blowup of beam size or vertical oscillation –
 One possible stroy

Energy loss (a few %)

For an example, down of a (superconducting) cavity

Slippage from the regular optics or feed-back timing

Vertical blowup of beam size or vertical oscillation

Fast loss monitor
Fast sensor of RF phase
may help mask

The problem will be occured even for new masks.

Generation of groove

(further study is necessary)

Ver.4 (the ultimate weapon for arc section)

Basic structure

Use a bent chamber as a mask.

Features

*Free from trapped modes (HOM is excited.)

But

A space of several meters is necessary.

Available for arc section

Ver.4 Components

Mask chamber (LER)

Bellows chamber (LER)

Ver.4 set up in the tunnel (vertical)

Temperature rises of bellows around Ver.4 masks

Temperature rises at bellows around Ver.4 masks are higher than other bellows.

Max. $\Delta t = 35^{\circ}C$

Temperature rise of bellows

Due to HOM generated by the mask?

Mask position dependence of bellows temperature near masks.

Fill pattern dependence of bellows temperature near masks.

Present status of Ver.4 mask

- (1) There is no fatal trouble up to now.
 - Maximum beam current is 780 mA (LER).
 - No grooves was found for LER up to now.
- (2) Temperature rise of bellows near Ver.4 mas is higher than others
 - Main cause is HOM and/or scatterd SR?
 Further studies are necessary.
 - •We have to keep watching.
- (3) Check of grooves at regular intervals is necessary.

 Prepare peeking hole for HER masks and spare masks.

Ver.5 (the ultimate weapon for IR)

Structure (cross section)

Features

HOM is heavily dumped by SiC dumper. $Q \le 10$

Designed power capacity is 10 kW

Avalilable for narrow space

Ver.5 Components

Mask (plunger)

SiC duct (HOM dumper)

Ver.5 set up in the tunnel for LER IR (Vertical)

Cross section of the chamber is changed to adjust the mode frequency

Present status of Ver.5 mask

(1) Estimated input power

~800 W at 500 mA

√ ~4 kW at 2600 mA

No problem

(2) Check of grooves at regular intervals is necessary.

Summary

(1) Old masks (Ver.1 - Ver.3) had various problems and troubles.

Excess heating, Arcing --> Vacuum leaks Excitation of beam oscillations

Mask problems had been limitting the stored beam currents.

(2) New masks (Ver.4 and 5) well coped with RF and heating problems are developed

They are working well.

- (3) All masks in HER arc will be replaced to Ver.4.
 All masks in the KEKB are changed to new ones this year.
- (4) Grooves on mask head have to be kept watching Fast abort system should be prepared.

