IR chamber upgarde

Presented by Hitoshi Yamamoto Univeristy of Hawaii

> KEK-B Review February 24, 2001

- 1. Beam backgrounds
 2. Heat management
 3. Mechanical design

Versions of SVD1.x IR beampipe

All r=2 cm, Be: He cooled, Cone: Water-cooled.

verision	Period comment		
SVD1.0	no gold on Be 6/99→8/99 SVD: rad-soft chip		
	0,533 70,33	(200 kRad)	
SVD1.2	10/99→7/00	20 μm gold outside Be SVD: rad-soft chip (200 kRad)	
SVD1.5	10/00→	$10~\mu m$ gold inside Be W masks enlarged SVD: rad-tolerant chip (1MRad, mostly)	

44

IR Beampipe Design

Default design has been decided:

- 1. Be section
 - The design has been finalized at the last SVD upgrade review.
 - PF200 liquid cooling.
- 2. Cone section
 - Tantalum vacuum pipe.
 - Tungsten outer masks.
 - Water cooling.
- 3. Two sections joined by SuS transition.

Ta-SuS joining/vacuum tests starting at IHI.

The quote for the entire beampipe system has been issued. Budget is tight, but not out of question.

SVD2.0 Be Beampipe

- 1= Lam (1.5 cm)
- · Liquid cooled (PF200) · Au 10 ju inside Au 250 ju outside (except fiducial)

Synchrotron Radiation

Two Sources of SR Backgrounds

'Soft' SR background

SR photons from HER upstream. (Quads, Steering)
Caused gain loss of SVD1.0.

• 'Hard' SR background

Backscattering from downstream HER. (From QCSR)
High-pulseheight component of SVD.
CDC leakage current.

Machine configuration near Belle

SVD2.0 Design for 'Soft' SR

Pursue r = 1cm possibility.

- Tilt 11mrad w.r.t. Belle axis.
 - Smaller masks → less HOM.
 3mm high masks (HER and LER).
 - Be section and cones on axis.
- Sawteeth on HER side (varying angle).
 Surface scattering → tip scattering.
 ~ 1/50 dose reduction.
- Masks away from fiducial region. $\sim 1/10$ backscattering dose per 5cm. (300 μ m Au foil)

Total dose $\sim 0.01 kRad/yr$ (dominated by HER-mask tip-scattering from QC2) LER-side Ta surface backscattering (QC2).

- Roughly consistent with SRSIM
 (Stu Henderson's code that replaces EGS)
- All SR from LER found to be negligible. (Low E_c)

SR dose simulation

Method

1. SRGEN (by S. Henderson)

Twiss parameters \rightarrow beam profile.

Steps through magnetic field.

Numerically integrates the power spectrum on a given surface.

2. EGS4

Photons to 1 keV, Electrons to 20 keV.

KEK improvements (L-edge X-rays etc.)

SVD2.0 Design for 'Hard' SR

HER offset $\sim 4.3cm$ in QCSR on exit $E_c = 38 \text{ keV}$ Power = 25 kW/A

Dumped on a beampipe surface that has direct line of sight to IR beampipe.

'SR dump' beampipe: Al \rightarrow Cu ($\times1/10$) (1999 Fall) SVD1.5: \sim 10kRad expected by simulation.

SVD2.0

- Use Ta for the cone section.
 (absorb QCSR 40 keV X-rays)
- LER side mask made of SS (not AI). Blocks backscattered X-rays for $E_{\gamma} < 100 keV$.
- 11mrad tilt.
 - → 'Hard' SR should be negligible.

Particle Background

Simulation

- TURTLE simulation
 - The entire ring, up to one whole turn.
 - Bremsstrahlung and Coulomb scattering on CO at 1 nTorr.
- GEANT simulation
 - Full detector simulation.
 - Up to QC2 on both sides(8.3 m HER side, 6.5 m LER side)
 - Magnetic fields of Quads and soleinoids in the GEANT simulation.

Single-Beam Background

Dec 2000

	current	pressure	CO press.	dose
HER	0.4A	0.45 nTorr	0.81 nTorr	7 kRad/yr
LER	0.5A	0.53 nTorr	0.95 nTorr	15 kRad/yr

Normalizing this to the design beam currents and at $1nTorr\ of\ CO$,

	current	CO press.	dose
HER	1.1A	1 nTorr	24 kRad/yr
LER	2.6A	1 nTorr	82 kRad/yr

The MC expectation to be compared is

	current	CO press.	dose
HER	1.1A	1 nTorr	9.4 kRad/yr
LER	2.6A	1 nTorr	40.4 kRad/yr

Namely, the agreement between data and MC is within a factor of a few.

SVD2.0 geometries

Inner masks: 1/2 ~ 1/3 reduction of SUD Lyn 1 dise.

Particle Background Simulations

Unit = kRad/yr (1 $yr = 10^7 sec$) (1.1A/2.6A, 1nTorr CO)

SVD1.4					
		L1	L2	L3	
r(cm)		3.0	4.6	6.1	
HER Brem		5.1 ± 0.6	2.3 ± 0.2	1.8 ± 0.2	
HER Coul		4.3 ± 0.7	2.6 ± 0.5	0.9 ± 0.2	
LER Brem		5.4 ± 1.2	2.2 ± 0.5	1.2 ± 0.2	
LER Coul		35.0 ± 3.2	16.8 ± 1.5	8.4 ± 0.7	
Sum		49.8	23.9	12.3	
	SVE	$02.0 \ r = 1cn$	\overline{n}		
	L1	L2	L3	L4	
r(cm)	1.5	2.2	4.5	6.0	
HER Brem	13.9 ± 1.4	9.4 ± 0.8	4.3 ± 0.3	3.8 ± 0.3	
HER Coul	9.0 ± 2.2	5.1 ± 1.1	2.6 ± 0.4	2.2 ± 0.3	
LER Brem	4.7 ± 1.6	5.4 ± 1.5	1.8 ± 0.4	1.7 ± 0.6	
LER Coul	96.1 ± 13.8	66.3 ± 6.9	22.5 ± 3.1	16.6 ± 1.6	
Sum	123.7	86.2	31.2	24.3	
	SVD:	$2.0 \ r = 1.5c$	\overline{m}		
	L1	L2	L3	L4	
r(cm)	1.5	2.2	4.5	6.0	
HER Brem		10.2 ± 0.9	4.6 ± 0.3	3.8 ± 0.3	
HER Coul		3.0 ± 0.7	1.4 ± 0.3	2.4 ± 0.4	
LER Brem		7.7 ± 2.4	3.2 ± 0.7		
LER Coul		85.0 ± 13.3	25.8 ± 2.4	13.8 ± 1.2	
Sum		105.9	35.0	22.6	

IR Beampipe Heating Sources

- 1. Synchrotron Radiation
 - In some cases,
 - \bullet ~3.5 W on the HER mask,
 - \rightarrow 6 K rise at the tip.
 - $\bullet \sim$ 10 W on Ta pipe (forward side). Manageable.
- 2. Image current

(μ : permeability, σ : conductivity)

Heat
$$U(W) \propto n_b Q_b^2 \sqrt{\frac{\mu}{\sigma_z^3 \sigma}} \cdot \frac{L}{r}$$

SVD2.0 (r=1cm):

- \rightarrow 25 W total on Be section.
- → 30 W at a SS piece (5 W with Au coating)
- \rightarrow 70 W at a Ta pipe (28 W with Au coating) Au coating on SS and Ta (r=1cm section).
- 3. HOM

HOM Heating Simulation

1. MAFIA

Non-cylindrical geometry. CPU intensive. HOM of a mask is determined by the area of mask aperture.

2. ABCI

Cylindrical geometries only. Estimates trapped modes \rightarrow heating.

Heat generated on the Beryllium section. $(P_{heat}: estimated by ABCI)$

measurement	current	n_b	P_{meas}	P_{heat}
BEAST	e ⁺ 300 mA	648	7W	8W
BEAST	e^- 350 mA	921	10W	8W
SVD1.2	e ⁺ 450 mA	1146	10.5W	11W

ABCI estimate works reasonably well.

HOM Heating by Sawteeth

ABCI estimates

I=2.6A, $dt_{bunch}=2$ ns, $\sigma_z=4$ mm (LER dominated)

	P_{HOM} (W)	P_{heat} (W,trapped)
Fixed angle	5550	740
Varying angles	1860	38

HOM Heating Estimate of SVD1.2 and 2.0

HOM loss and trapped modes (heating) for entire IR beampipe:

measurement	P_{HOM} (W)	P_{heat} (W)
SVD1.2	6800	300
SVD2.0*	2560	68

 $*\times1/2$ for the final SVD2.0 design with large inner particle mask.

Assuming 1/3 is deposited on Beryllium section, Heat(Beryllium) = 100 W for SVD1.2

For SVD2.0 also, assume 100W on the Beryllium section, and 100W on each cone.

+ 50 W on each SS section.

Stress analysis of SVD1.2

IHI analysis: He cooling close to allowed stress limit: (100W on Beryllium section)

item	value	Stress (kgf/mm ²)
T (Al-Be joint)	15 K	1.29
dT(Be inner-outer)	14.6 K	1.01
dT(Al-Be)	5 K	0.81
Self weight + press.	-	0.51
Total		3.51
Allowed limit*		3.9

^{* 1.5} times 0.2% elongation yield point.

Verified by FEA analysis of Marc Rosen.

Be Beampipe Coolant Selection

IHI analysis: He cooling close to allowed stress limit

Water cooling: used by CLEO/BaBar but corrosion risk (sulfide, chroride, etc.)

PF200 widely used by CLEO including Be beampipe well tested on bare Be (no need to coat)

	water	PF200
density (g/cc)	1.0	0.78
viscosity (g/cm·s)	0.010	0.019
th.cond. (W/cm·K)	0.0062	0.0016
sp. heat (J/g·K)	4.2	2.3

Still, avoid direct liquid-to-vacuum braze.

Be Beampipe

- Inner cylinder 0.5mm thick.
- Outer cylinder 0.25mm thick.
- Gap for PF200 0.5mm.
- 6 ribs
- One inlet, one outlet.
- To be facbricated by Brush-Wellman.

Temp rise of inner Be: $\sim 1/5$ of He cooling.

FEA analysis

Sag test: Simple support at ends.

0.02mm max

2 MPa max (\sim 6% yield point)

- Cantilevering deflects 1cm at the other end, and exceeds yield limit.
- Thermal stress OK (in particular at the SS tube)

* Approved by IHI, BW.

To do list

- Particle background
 - CDC dose/rate study and optimization
 - r=1.5 cm optimization
 - Touschek effect simulation
- Final machanical design
- HOM resonance study
- Establish assembly procedure that avoids cantilevering of the IR beampipe.