SCC (Feb.25 16:30-16:50 T.Furuya)

Superconducting Cavity

~ R&D-target of SC for 4 A operation ~

Feb. 25, 2002 Takaaki Furuya

▼ From the latest parameter list of SuperKEKB:

	KEKB	SuperKEKB
Beam intensity	1.1 A	4.1 A
Number of bunches	5000	5000
Bunch charge	2 nC/bunch	8 nC/bunch
Bunch length	4 mm	3 mm
Accelerating voltage	1.5 MV/cavity	1.3 MV/cavity
Number of SC cavities	8	12
RF power	250 kW/cavity	460 kW/cavity

∀ Figures achieved in KEKB

	design	usual operation
Beam intensity	1.1 A	0.88 A
	in 5000 bunches	in 1225 bunches
Accelerating voltage	1.5 MV/cavity	1.1-1.4 MV/cavity
RF power	250 kW/cavity	250-300 kW/cavity
HOM power	5 kW/cavity	7 kW/cavity

∀ For heavy beam loading

We have to consider;

- 1) HOM power
- 2) Input coupler of 500kW.
- → Traveling RF of 800kW was given to the coupler at a coupler test stand.

- **∀** HOM power is the one that we have to concentrate.
- ✓ Source of HOM power
 - 1) Trapped HOM

HOM power =
$$\mathbb{R}/\mathbb{Q} \cdot \mathbb{Q} \cdot \mathbb{I}_0^2$$

2) Wide range HOM, (loss factor k) HOM power = $k(\sigma_z) \cdot q \cdot I_0$

HOM power =
$$k(\sigma_z) \cdot q \cdot I_0$$

$$= \frac{1}{f_{rev}} k(\sigma_z) I_0^2 \frac{1}{N_b}$$

- → Wide range HOM is dominant.
- → Measured power is in agreement with the calculated one.

✓ For existing cavities:

O Loss factor k of 3mm bunch:

O HOM power of 80kW comes into a pair of ferrite dampers. Power = 2.43(V/pC)*8e-9*4.1 = 80 kW

c.f. The k at 4mm is 1.8 V/pC.

- → Estimated surface temperature of the ferrite reaches >250°C!!!
- ✓ Power capacity of dampers
- → Out gas rate.
- → Curie temperature of ferrite (280°C).
- → Reduce a loss factor without changing the cavity shape (inside of a cryostat).

1) HOM power vs estimated surface temperature.

2) Power absorption vs temperature.

∀ Loss factor search

1) Size up of vacuum chamber from 150mm(dia.) to 220mm.

2) Connect 300mm(dia.) to 300mm.

∀ Loss factors in various cases

	k at 3mm		HOM/module	HOM/module
			at 4.1A x 5000	at 4.1A x 5000
				for 4mm bunch
1) existing	Taper-S	0.264	80 kW	Total $k = 1.83 V/pC$
	Taper-L	0.709		→59 kW
	Cell	0.856		
	Damper	0.6		
	Total	2.43		
2) 220 duct	Taper-S	0.0	55 kW	Total $k = 1.37V/pC$
	Taper-L	0.204		→45 kW
	Cell	0.856		
	Damper	0.6	,	
	Total	1.66		
3) 300-300	Taper-S	0.0	49 kW	Total $k = 1.26V/pC$
	Taper-L	0.0		→41 kW
	Cell	0.856		
	Damper	0.6		
	Total	1.46		

- HOM power can be decreased to ~50 kW by changing tapers.
- Temperature rise at 50 kW is still $120 140 ^{\circ}\text{C}$.
- The maximum power given to the dampers so far are;
 - 15 kW to LBP-damper,
 - 12 kW to SBP-damper,
 - at a test stand.

∀ HOM damper for 50 kW/module

- 1) Reduce the ferrite thickness from 4mm to 2mm.
 - → Temperature-rise decreases to a half? Assuming;
 - * thermal conductivity of ferrite of 7 W/mK,
 - * 30kW to LBP damper and 20kW to SBP damper.

Temperature rise is 60-70°C for both dampers.

→ Need to check the Q of trapped-HOMs. Simulation for the most dangerous mode (TM_{011}) shows a similar Q-value of around 150.

Chapter 6. Design and 1/3-size model tests

, 6.2-3: Q as a function of ferrite length, L_f, when the distance from the taper is 17cm. Thickness was taken

- → A test damper with 2mm ferrite is under fabrication.
- 2) Use a SiC damper because of its superior thermal conductivity?
- \rightarrow Thermal conductivity of ~150 W/mK.
- → Need to optimize the damper shape and location.

∀ Summary

- 1) HOM power is a serious problem for the dampers under 4A operation.
- 2) Estimated HOM power at 4.1A reaches 80kW/cavity for existing cavities.
- 3) By changing the taper section, the loss factor can be reduced to 1.66 V/pC, which correspond to 50kW/cavity.
- 4) To reduce the surface temperature of ferrite at 50kW;
 - ✓ Reduction of ferrite thickness to 2mm,
 - ✓ Use of SiC damper.
- 5) R&D of HOM damper is essential for the SC of SuperKEKB.