Damping Ring and BT

Kikuchi, M. 2002.2.26 MAC

- 0. Introduction
- Parameters
- ECS
- DR
- BCS
- Summary

Layout of Beam Lines

0. Introduction

Both upgrade plans (C-band case, S-band recirculation case) need damping rings for both beams.

Reasons:

- C-band case: shorter bunch for smaller energy-spread (esp. e+)
 - low emittance for small aperture of accelerating structures(e+)
 - damped beam for smaller energy- and emittance-tail. (e+ and e-)
- S-band case: waiting time for next RF-pulse (e+)
 - damped beam for smaller energy- and emittance-tail. (e+ and e-)

 \diamond I will talk only on the positron DR.

1. Parameters

1. Beam energy:1 GeV2. Beam charge:2.5 nC/pulse

3. Energy Profile

Realistic simulation by Kamitani and Sakai

1. Parameters -2

Energy aperture of 3 % is necessary in order to accommodate 95% of the beam.

---> this requirement is severe for DR.

Energy compression is necessary prior to injection to DR

2. Energy Compression System

To proceed the design, we need a

parameterization of the energy profile

The profile can be reproduced by a simple model of a Gaussian bunch on the crest which has two parameters, bunch length and the intrinsic energy spread

2. Energy Compression System -2

$$\psi(z,E) = f(z,\sigma_z) f(E - E_0 \cos kz,\sigma_E)$$

$$f(x,\sigma) = \exp(-x^2/\sigma^2/2)$$

$$\psi(E) = \int_{-\infty}^{\infty} \psi(z,E) dz$$

The model with $\sigma_z = 2.3 \text{ mm}$ $\sigma_E / E_0 = 0.0017$ reproduces the simulation

2. Energy Compression System -3

2. Energy Compression System -4

2. Energy Compression System -5

Conclusion:

Requirement of energy acceptance of DR should be 1.5 %

3. Damping Ring

Design study based on an example of DR with the FODO cell

3. Damping Ring-2 Parameters

Circumeference	106.7	m
Number of bunches	2	
Hor. Damping time	20	ms
Momentum spread	5.44E-04	
Cavity frequency	714	MHz
Cavity voltage	1.0	MV
Momentum acceptance	1.5	%
Bunch length	4.68	mm
Emittance	1.03E-08	m
No. of cells	32	
Pole-tip field: Bend	1.34	Т
Quad	0.837	Т
Sext	0.296	Т

Momentum compaction 0.0089

	Injection	Extraction
Emittance	3.00E-07	4.95E-08
Energy spread	0.6 % *1)	0.16%
Bunch length σ z	4.3 mm *2)	4.7 mm

*1) Defined as the largest extension in E-profile devided by 2.5

*2) Defined as the largest extension in z-profile devided by 2.5

3. Damping Ring-3 Layout

11

3. Damping Ring-4 Optics

Phase advance H:130deg, V:94deg Bend length 0.26 m Quad length 0.25 m Sext length 0.15 m Magnet-to-magnet 0.15 m

3. Damping Ring-5 Dynamic aperture

 \Box Proposed ring has large dynamic aperture up to 3% of $\Delta E/E$, which is limited by the bucket height.

4. Bunch Length Compression (BCS)

- Bunch length has to be compressed to match the C-band linac.

Extracted beam: $\sigma z = 4.7$ mm, $\sigma E=0.16$ % Bunch compression ratio: 1/5

BCS parameters	
Compression ratio	1/5
Cavity voltage(S-band)	27.9 MV
R56	-0.59 m

4. Summary

- 1. We have designed the ECS. The ECS in the LTR line relaxes the energy-aperture requirement to DR from 3% down to 1.5%.
- The Damping ring with simple FODO cell with 1MV cavity voltage fulfills the aperture requirement.
 ---- Need machine error analyses
- 3. We found the realistic parameters of BCS in the RTL line.
- 4. We have found consistent beam-parameters for the LTR-DR-RTL system.