#### **RF** system upgrade - Overview

K. Akai

*Feb. 16, 2004 KEKB review committee* 

Contents: Base plan
High beam current and measures
Construction
Summary

# Base plan

- **KEKB RF system** 
  - Excellent performance at 1.8A (LER) and 1.2A (HER) shows potential for operating beyond the design beam current of KEKB.
- Strategy for SuperKEKB:
  - Adopt the same RF frequency as KEKB and use the existing RF system as much as possible, with improvements as necessary to meet the requirements for SuperKEKB.
- If this scheme is feasible:
  - Construction cost is greatly reduced.
  - Technical uncertainties are relatively small.
- Possible problems to be investigated:
  - Issues related to very high beam current (4 times as KEKB)
  - Short bunch length of 3mm.

#### The ARES cavity



Jan. 20, 2004

RF System for SuperKEKB (K. Akai)



RF System for SuperKEKB (K. Akai)



Jan. 20, 2004



#### **RF** parameters

| Ring                          | LER        | HER  |     |            |
|-------------------------------|------------|------|-----|------------|
| Beam current (A)              | 9.4        | 4.1  |     |            |
| Wiggler magnets               | yes (half) | no   |     |            |
| Energy loss/turn (MeV)        | 1.2        | 3.   | .5  |            |
| Loss factor, estimated (V/pC) | 40         | 50   |     |            |
| Radiation loss power (MW)     | 11.3       | 14   | .3  |            |
| Parasitic loss power (MW)     | 7.1        | 1.   | .7  |            |
| Total beam power (MW)         | 18.4       | 16   | .0  |            |
| Total RF voltage (MV)         | 14         | 23   |     |            |
|                               |            |      |     | (Total)    |
| Cavity type                   | ARES       | ARES | SCC | ARES / SCC |
| No. of cavities               | 28         | 16   | 12  | 44 / 12    |
| Voltage /cav. (MV)            | 0.5        | 0.5  | 1.3 |            |
| Loaded-Q value (x10E4)        | 2.4        | 2.4  | 4.0 |            |
| Beam power /cav. (kW)         | 650        | 650  | 460 |            |
| Wall loss /cav. (kW)          | 233        | 150  | -   |            |
| Detuning frequency (kHz)      | 45         | 31   | 74  |            |
| Klystron power (kW)           | 930        | 850  | 480 |            |
| No. of klystrons              | 28         | 16   | 12  | 56         |
| Total AC plug power (MW)      | <b>40</b>  | 23   | 10  | 73         |

RF System for SuperKEKB (K. Akai)

#### Issues to be solved

- Strong longitudinal CBI due to a large detuning, even with ARES and/or SCC.
  - Growth rate =  $(0.3 \text{ ms})^{-1}$
- CBI due to HOM and other parasitic modes
- Large HOM power in each cavity
  - HOM dampers
- Strengthening of RF power is required
  - 4 times as high as KEKB

## Measures for the fundamental mode instability

- Modify LER-ARES
  - Remodel the A-C cavity of the ARES to increase the stored energy further.
  - The growth rate is then reduced from (0.3ms)<sup>-1</sup> to (1.6ms)<sup>-1</sup>.
  - This modification will not be used on the HER-ARES (majority of the driving impedance is attributed to SCC).
- Powerful feedback using a comb filter
  - The growth time of 1.6ms (LER) and 1ms (HER) is faster than the radiation damping time by a factor of 20.
  - Further study to test the performance limit of existing -1 mode damper in KEKB and the R&D to improve the performance, if necessary, will continue.
  - The -2 mode damper will be added.

#### Modification of LER-ARES

- The ARES in LER will be remodeled to increase the stored energy further.
- By enlarging the coupling hole between A-C cavities, Us/Ua will be increased from 9 to 15.

T. Kageyama, et. al.



Coupling impedance for the p/2 mode

|                       | exsisting | modified |
|-----------------------|-----------|----------|
| Energy ratio          | 1:9       | 1:15     |
| <b>Detuning</b> (kHz) | 65        | 45       |
| Growth time (ms)      | 0.3       | 1.6      |
| C-damper (kW)         | 41        | 26       |



RF System for SuperKEKB (K. Akai)

#### The existing -1 mode damper at KEKB

- The -1 mode CBI occurs at more than 1A in KEKB-LER.
- It is suppressed by the -1 mode damper.
- The damping time of 1 ms is required for SuperKEKB.





RF System for SuperKEKB (K. Akai)

#### CBI due to the 0 and $\pi$ modes of ARES



- The large detuning of the A-cavity gives rise to imbalance of the 0 and  $\pi$  mode impedance.
- Longitudinal CBI can be excited. The growth time is 4ms.
- It is outside the bandwidth of the klystrons.

## Summary of CBI due to RF cavities

#### Longitudinal

| Item                | Freq.  | LER    |             |        | Cure        |     |
|---------------------|--------|--------|-------------|--------|-------------|-----|
|                     | (MHz)  | # cav. | Growth      | # cav. | Growth      |     |
|                     |        |        | time        |        | time        |     |
| ARES-HOM            | 1850   | 28     | 5ms         | 16     | 47ms        | B-B |
| SCC-HOM             | 1020   |        | -           | 12     | <b>49ms</b> | B-B |
| Crab-HOM and LFM    | 655    | 2      | <b>41ms</b> | 2      | 214ms       | B-B |
| ARES - 0/pi modes   | 504    | 28     | 4ms         | 16     | 29ms        | B-B |
| Fundamental –1 mode | 508.79 | 28     | 1.6ms       | 16+12  | 1ms         | RF  |
| Fundamental –2 mode | 508.69 | 28     | 20ms        | 16+12  | 21ms        | RF  |

Longitudinal bunch-by-bunch FB is needed. Required damping time is 4ms.

Transverse

| Item     | Freq.   | LER    |        | HER    |        | Cure |
|----------|---------|--------|--------|--------|--------|------|
|          | (MHz)   | # cav. | Growth | # cav. | Growth |      |
|          |         |        | time   |        | time   |      |
| ARES-HOM | 633     | 28     | 4ms    | 16     | 33ms   | B-B  |
| SCC-HOM  | 688/705 |        | -      | 12     | 12ms   | B-B  |
| Crab-HOM | 773     | 2      | 4ms    | 2      | 12ms   | B-B  |

The instability can be suppressed by the present transverse bunch-by-bunch FB.

#### **ARES HOM dampers**

#### HOM LOADS



Jan. 20, 2004

#### HOM power of LER-ARES



Jan. 20, 2004

RF System for SuperKEKB (K. Akai)

## Improve the ARES-HOM dampers

- The waveguide dampers
  - High power tested up to 3.3 kW/bullet (26 kW/cavity).
  - Upgrade needed to 80 kW/cavity.
  - Will be tested at higher power with a new high power source.
  - The number of bullets/waveguide will be increased.
- The grooved beam pipe dampers
  - High power tested up to 0.5 kW/groove (2 kW/cavity).
  - Upgrade needed to 20 kW/cavity.
  - A new type of damper? Such as a winged chamber with SiC bullets.



#### SCC HOM power and beam pipe

| Beam pipe diameter                    | 150 mm (present) | 220 mm (enlarged)                                             |
|---------------------------------------|------------------|---------------------------------------------------------------|
| Loss factor for 3mm<br>bunch (Furuya) | 2.46 V/pC        | 1.69 V/pC                                                     |
| HOM power for 4.1A,<br>5000 bunches   | 83 kW/cavity     | 57 kW/cavity                                                  |
| Influence to other<br>groups          | No change        | Replace chambers<br>Large bore magnets<br>Develop gate valves |

• Present HOM dampers in KEKB have been operated up to 12 kW/cavity.

### Improve the SCC-HOM damper

- The present HOM damper will be bench tested to see its performance limit.
- The point is effective cooling, surface temperature, and outgassing.
- If SBP side damper works at 20kW, the present dampers may be used for Super-KEKB. If not, modification or new design of dampers is necessary.
- In addition, the beam pipe diameter will be changed to 220 mm to reduce the loss factor.

## Strengthening of RF power

- Required RF power provided to beam is 18 MW (LER) and 16 MW (HER), four times as high as those of KEKB.
- The required RF voltage is relatively low.
- The number of cavities should be kept as small as possible to reduce the total impedance in the ring.

- Change to one ARES/klystron configuration.
  - KEKB: two ARES/one klystron
- The input power to each cavity will be nearly doubled.
- The number of klystrons will be more than doubled.

#### Loss factor and Number of RF units

• Required number of RF units is expressed as:

$$N_{cav} = \frac{U_0 I_b + T_b k_{others} I_b^2}{P_{b0} - T_b k_{cav} I_b^2}$$

$$T_{b} = 1.965 \times 10^{-9} (s)$$
$$I_{b} = 9.4 (A)$$
$$U_{0} = 1.2 \times 10^{6} (V)$$
$$k_{cav} = 0.67 \times 10^{12} (V/C)$$

$$N_{cav} = \frac{11.3 + 0.174 \times k_{others}(V/pC)}{P_{b0}(MW) - 0.117}$$

 $k_{others}$  is loss factor except cavities, and  $P_{bo}$  is beam power by each unit.



Loss factor except cavities (V/pC)

RF System for SuperKEKB (K. Akai)

Number of RF stations in LER

## Input couplers

- Performance at KEKB
  - Operating typically at 300-350 kW/coupler.
  - The ARES coupler tested up to 950 kW (through).
  - The SCC coupler tested up to 800 kW (through), 300 kW (total reflection).
- Requirement for SuperKEKB
  - Operation at 900 kW/coupler (ARES), 500 kW/coupler (SCC).
- Plans
  - A new high power test setup.
  - R&D to suppress multipactoring (TiN coating).

#### Number of RF units

|       |           | KE  | КЕКВ |     | KEKB |
|-------|-----------|-----|------|-----|------|
|       |           | LER | HER  | LER | HER  |
| Oho   | D4        |     | 3    |     | 14   |
|       | D5        |     | 3    | 8   | 2    |
| Fuji  | D7        | 5   |      | 10  |      |
|       | <b>D8</b> | 5   |      | 10  |      |
| Nikko | D10       |     | 4    |     | 6    |
|       | D11       |     | 4    |     | 6    |
| Т     | otal      | 2   |      | 5   | 56   |

#### New buildings needed

|            | Building for Power<br>Supply (hight=5m)      | Control room             | Schedule |
|------------|----------------------------------------------|--------------------------|----------|
| <b>D4</b>  | 455 m <sup>2</sup> (35m×13m)                 | 170 m <sup>2</sup>       | 2005~06  |
| <b>D5</b>  | -                                            | -                        |          |
| <b>D7</b>  | 273 m <sup>2</sup> (21m×13m)                 | 100 m <sup>2</sup>       | 2005~06  |
| <b>D</b> 8 | <b>304 m<sup>2</sup></b><br>(16m×13m+12m×8m) | -                        | 2005~06  |
| <b>D10</b> | <b>81 m<sup>2</sup> (9m×9m)</b>              | <b>50</b> m <sup>2</sup> | ~2009    |
| D11        | -                                            | -                        |          |
| Total      | 1113 m <sup>2</sup>                          | 320 m <sup>2</sup>       |          |

## **Construction plan**

- Before 2008
  - Construct 14 units of RF system
    - To change to 1 ARES/1 klystron configuration
  - 2 RF stations for Crab crossing experiment @Nikko
- After 2008
  - Construct 18 units of RF system
  - Fabricate 10 more ARES's
  - Fabricate 4 SCC's
  - Construct RF system for Crab cavities

#### Schedule



Jan. 20, 2004

RF System for SuperKEKB (K. Akai)

### Cost estimation

- Total cost = 111.2 Oku-yen, including
  - 32 klystrons
  - 15 power supplies
  - Evaporative cooling system for klystron collector
  - 32 High-power and Low-level systems
  - 20 existing ARES's to be modified
  - 10 new ARES's for LER
  - 4 additional SCC's for HER
  - **RF** system for Crab cavities
  - R&D and Beam tests
- Cost for related infrastructures such as buildings, electricity, cooling system are not included.

### **RF** system for Damping Ring

- Base plan assumed
  - Same RF frequency as KEKB
  - Use ARES (full set)
- Construction
  - Fabricate a klystron and an ARES cavity.
  - An existing power supply (B-type) will be moved.
  - High-power and low-level system: partly new, partly reused.
  - Total cost is about 2.4 Oku-en.
     (Building is not included.)

#### • **RF-related parameters**

| Bunch charge        | 2.5   | nC    |
|---------------------|-------|-------|
| Number of bunches   | 4     | (2x2) |
| Circumference       | 131.3 | m     |
| Beam current        | 23    | mA    |
| Energy loss/turn    | 0.073 | MV    |
| <b>RF frequency</b> | 508.9 | MHz   |
| RF voltage          | 0.261 | MV    |
| Wall dissipation    | 42    | kW    |
| Beam power          | 1.7   | kW    |
| Number of cavity    | 1     |       |

## Summary of SuperKEKB RF system\_1

- Base plan:
  - The existing RF system will be used as much as possible, with improvements as necessary.
- To suppress the CBI due to the accelerating mode:
  - LER-ARES will be modified to increase the stored energy.
  - The -1 mode damper will handle the growth time of 1 ms.
- CBI due to RF cavities:
  - Transverse modes can be suppressed by the present BbyB FB.
  - Longitudinal BbyB FB is required with a damping time of 4 ms.
- HOM dampers to absorbe a large power:
  - Performance limit of the present dampers will be tested.
  - A new damper may by necessary, particularly for the GBP damper.

## Summary of SuperKEKB RF system\_2

- Strengthening of RF power by a factor of 4.
  - Improvement of the couplers will continue to double the operating power.
  - The number of RF unit will be doubled.
- Crab cavity
  - A new crab cavity is proposed, which can be used at 10 A.
  - The design is completed. It has sufficient property for SuperKEKB.

#### Impedance-related issues

|                         | KEKB @4mm       |             | Super-KEKB @3mm |                   |             |              |
|-------------------------|-----------------|-------------|-----------------|-------------------|-------------|--------------|
|                         | in Design       | Report      |                 |                   |             |              |
|                         | Number of items | Loss factor | Number of items | Loss factor /item | Loss factor | Comment      |
|                         |                 | (V/pC)      |                 | (V/pC)            | (V/pC)      |              |
| ARES cavity             | 20              | 10.6        | 28              | 0.667             | 18.7        |              |
| <b>Resistive-wall</b>   | 3016 m          | 4.0         | 3016m           | -                 | 6.5         | Copper       |
| Photon Masks at arc     | 1000            | 4.6         | 800             | 1E-8              | 8E-6        | ante-chamber |
| Pumping slots at arc    | 10x1800         | 0.37        |                 | -                 | 0.0019      | ante-chamber |
| Pumping slots @straight |                 | +           | 800             |                   | +           |              |
| BPMs                    | 4x400           | 0.79        | 4x400           |                   | +           |              |
| Masks at IP             | 1               | 0.08        | 1               |                   | +           | pending      |
| IR chamber              | 1               | 0.29        | 1               |                   | +           | pending      |
| <b>Recomb. chambers</b> | 2               | 1.6         | 2               |                   | +           | pending      |
| Bellows                 | 1000            | 2.5         | 800             | 4E-3              | 3.2         |              |
| Flange gap              |                 | +           | 800             | 1E-4              | 0.08        |              |
| Gate Valve              |                 | +           | 40              | 3.1E-3            | 0.12        |              |
| Feedback kickers        |                 | +           |                 |                   | +           |              |
| Injection/Abort kickers |                 | +           |                 |                   | +           |              |
| Septum                  |                 | +           |                 |                   | +           |              |
| Movable masks           |                 | +           | 16              | 1                 | 16          |              |
| HOM absorbers (RF end)  |                 | +           | 4               | ~0.5              | ~2          | 150 φ        |
| Tapers (RF end)         |                 | +           | 4               | 0.04              | 0.16        | 94⇔150φ      |
| Tapers (others)         |                 | +           | 72              | 3E-3              | 0.22        |              |
| Total                   |                 | 25.7+       |                 |                   | 46.9+       | tentative    |

#### Loss factor of LER

(Suetsugu, Shibata, Stanic, Kageyama, Akai)