

ARES Upgrade for Super KEKB

KAGEYAMA Tatsuya for the KEKB RF ARES cavity group

- Brief Review
- Fundamental Mode Issues
- HOM Load Issues
- Input Coupler R&D
- Summary

Fundamentals of the ARES cavity system

Operation of conventional copper cavities under the heavy beam loading (2.6A for KEKB LER) would bring on

The longitudinal CBI (Coupled-Bunch Instability, $\mu = -1, -2, \cdots$) driven by the accelerating mode, which is to be detuned downward from the f_{RF} by Δf_a where |dfa| would amount to $\sim 2 \times f_{rev}$.

$$\Delta f_a = -\frac{Isin\phi_s}{2V_c} \times \frac{R}{Q} \times f_{RF} = -\frac{P_b tan\phi_s}{4\pi U} \longrightarrow |\Delta f_a| \propto \frac{P_{\text{beam}}}{U_{\text{acc. mode}}}$$

KAGEYAMA, T. KEKB Review Feb. 16, 2004

Super KFKB

Fundamentals of the ARES cavity system cont'd

S-cav functions as a kind of EM flywheel.

A flywheel is a device for storing energy or momentum in a rotating mass, used to minimize variations in angular velocity and revolutions per minute, as in a machine subject to fluctuation in drive and load.

ARES scheme

3-cavity system stabilized with the $\pi/2$ -mode operation

Engage C-cav in order to solve the following problems arising from coupling A-cav with S-cav:

- How to stabilize the EM field distribution between A-cav and S-cav
- How to suppress CBI driven by the parasite(s) on the accelerating mode

Fundamentals of the ARES cavity system cont'd

• The stored-energy ratio of the $\pi/2$ mode:

$$\frac{U_s}{U_a} = \frac{k_a^2}{k_s^2}$$

• The EM field distribution of the $\pi/2$ mode is stable against detuning of A-cav (= Δf_a) loaded with the beam.

The amount of detuning of A-cav can be reduced as:

$$\Delta f_{\pi/2} = \frac{\Delta f_a}{1 + U_s / U_a}$$

• The parasitic 0 and π modes can be selectively damped ($Q_L \approx 100$) with an antenna-type coupler attached to C-cav.

• Furthermore, the damped 0 and π modes are located almost symmetrically with respect to the $\pi/2$ mode. Therefore, their impedance contributions to CBI can be counterbalanced.

C-cav functions as a filter to isolate S-cav from A-cav's HOMs.

ARES Operation Status in KEKB

- $Q_0 = 10 M^2$ $Q_0 = 1.1 \times 10^5$ $P_c = 150 \text{ kW / cav}$
- V_c = 0.5 MV /cav

LER (e⁺): 20 ARES cavities

✓ Total Vc = 8~8.5 MV

(0.4~0.425 MV/cav)

✓ Beam current (max.): ~1.8A

✓ Input RF power/cav: ~300kW

✓ HOM power/cav: ~5kW

HER (e⁻): 12 ARESs and 8 SCCs ✓ Total Vc = 15 MV = 3.84MV(ARES) + 11.16 (SCC)

✓ Beam current (max.): ~1.1A

KAGEYAMA, T. KEKB Review Feb. 16, 2004

CÊKÊ

ARES cavities in the LER RF section Fuji D7

ARES Upgrade for Super-KEKB Fundamental mode issues

2.6 A by 20 ARESs for LER $\Delta f_a = -200 \text{ kHz}$

9.4 A by 28 ARESs for LER $\Delta f_a = -710 \text{ kHz}$

CBI driven by the π/2 accelerating mode:
 Δf_{π/2} = -71 kHz if U_s / U_a = 9 unchanged. (cf. f_{rev} = 99 kHz)
 We need to increase the stored-energy ratio U_s / U_a
 by enlarging the coupling slot between A-cav and C-cav.

Super KFKF

> CBI due to the parasitic 0 and π modes: The impedance imbalance will not be negligible. We have investigated the effect of the impedance imbalance when detuning A-cav by -710 kHz.

CBI due to the $\pi/2$ mode

Table 1: RF parameters of ARES cavity for Super KEKB LER.

U_s/U_a	9	15	18	
Coupling Slot	120×160	120×175	120×182	W×H mm ²
Ι		9.4 (2.6)		Α
# of Cavities		28 (20)		
$f_{\scriptscriptstyle RF}$		508.887		MHz
h		5120		
V_{c}		0.5		MV
$\hat{Q_{ heta}}$	1.11	1.27	1.32	×10 ⁵
$(R/Q)_{\pi/2}$	15	9.4	7.9	Ω
input β	5.4 (2.7)	4.1	3.8	
\boldsymbol{P}_{c}	150	210	240	kW
$\Delta f_{\pi/2}$	-72 (-20)	-45	-38	kHz

Numbers in () for KEKB LER

Super KEKB uest for BSI

CBI due to the $\pi/2$ mode (cont'd)

Coupling Impedance of the $\pi/2$ mode loaded with 9.4 A for U_s/U_a = 9, 15, 18. 10^{4} $\mu = -1$ $\mu = -1$ 10^{2} 10^{2} 10^{1} $\mu = -3$ 10^{0} 9 12 15 18 Us/Ua

Growth rates of the CBIs (μ = -1, -2, -3) due to the $\pi/2$ mode, plotted as a function of U_s/U_a .

By increasing U_s / U_a from 9 to 15, the growth rate of the severest CBI (μ = -1) can be reduced by one order of magnitude and down to τ = 1.5 ms, manageable with an <u>RF feedback system</u>.

KAGEYAMA, T. KEKB Review Feb. 16, 2004 S. Yoshimoto et al., "The -1 mode damping system for KEKB"

CBI due to the 0 and π modes

The damped 0 and π modes ($U_a: U_c = 1:1$ when $\Delta f_a = 0$ kHz) are located almost symmetrically with respect to the $\pi/2$ mode ($\approx f_{\text{RF}}$).

For KEKB ($\Delta f_a = -200$ kHz), Re[Z _{//}] has a small asymmetry with respect to f_{RF} .

 $|R^+ - R^-|_{max} \sim 500 \Omega/ARES \rightarrow \tau \sim 46 ms$

cf. τ_{rad} ~23 ms (KEKB)

The EM field distributions $(U_a:U_c)$ of the 0 and π modes are subject to the perturbation of first order $\Delta f_a / (f_{\pi} - f_0)$.

 $\Delta f_a = -200 \text{ kHz}$ (KEKB) \rightarrow -710 kHz (Super-KEKB)

The delicate counterbalancing may be deteriorated in Super-KEKB.

<u>ය</u> 6000 Top: Re (Z_{ll})/Cavity 4000 Re[Z_{μ}] of the 0 and π modes 2000 Us/Ua = 9with 2.6 A **Bottom:** Us/Ua = 9 $Re[Z_{ii}]$ imbalance $R^+ - R^-$ 2000 1000 (K⁺ - K)/Canify -1000 -2000 2000with 9.4 A $\tau = 3.3 \text{ ms} @ -44$ $\tau = 4.0 \text{ ms} @ -56$ for Super KEKB with respect to f_{PF} . Us/Ua = 15with 9.4 A

Detuning A-cav downward, $U_a > U_c$ for 0 mode, $U_a < U_c$ for π mode.

The fastest growth rate of CBI due to the impedance imbalance of 0 and π modes when $\Delta f_a = -710 \text{ kHz}$:

first order term $\Delta f_a / (f_\pi - f_0)$, where $f_\pi - f_0 \propto k_a \propto (U_s / U_a)^{1/2}$

50

 $\tau = 3.3 \text{ ms}$ for $U_s / U_a = 9$ (9.4 A) cf. $\tau = 46 \text{ ms}$ for $U_s / U_a = 9$ (2.6 A KEKB) τ = 4.0 ms for U_s/U_a = 15 (9.4 A) to be damped by longitudinal FB kickers

100

KAGEYAMA, T. **KEKB** Review Feb. 16. 2004

Super KĖKB uest for BSN

CBI due to the 0 and π modes (cont'd)

-100

 $\tau = 46 \text{ ms} @ -44 \text{ for KEKB}$

0

 $(f - f_{RF})/f_{rev}$

-50

ARES upgrade for Super-KEKB HOM load issues

HOM-damped structure for ARES •Based on the conceptual demonstrator ARES96 •Carefully designed to be smoothly embedded into the whole ARES scheme •Consists of 4 HOM WGs and 2 GBPs (Grooved Beam Pipe devised at KEK)

4 HOM WGs: Monopole & Dipole(V) HOMs

2 GBPs: Dipole(H) HOMs

WG HOM load (KEKB) Super KEKB uest for BSI WG HOM load: • Two bullet-shape SiC absorbers at the end of the HOM WG. • Each absorber directly water-cooled. • Power capability tested up to 3.3 kW / bullet (26 kW / cavity) with use of an L-band klystron. KAGEYAMA. T. **KEKB** Review Feb. 16, 2004

GBP HOM load (KEKB)

GBP HOM load:

- 8 SiC tiles per groove, brazed to a water-cooled OFC plate.
- Power capability tested up to 0.5 kW / groove (2 kW / cavity) with use of the same L-band klystron.

HOM load status in KEKB

WG and GBP HOM powers per cavity measured in the KEKB LER, compared with theoretical predictions ($\sigma_z = 7$ mm).

Loss factors computed for the whole damped structure (3D) and the GBPs (3D), together with those for a simplified axially symmetric structure (2D) with circular beam pipes (CBPs).

Upgrading WG HOM load for Super-KEKB

WG HOM load for Super-KEKB LER: ~80 kW / cavity

✓HPT'd up to 26 kW/cavity (3.3 kW/bullet) for KEKB: This limit is only due to the maximum RF power supplied by the current L-band klystron.

➢ Perform HPT over 3.3 kW/bullet:

We are planning to construct a new test stand for HOM loads with an L-band klystron capable of more than 10 kW (JFY 2004).

>Increase # of absorbers per WG if necessary.

Upgrading GBP HOM load for Super-KEKB

GBP HOM load for Super-KEKB LER: ~20 kW / cavity

 \checkmark HPT'd up to 2 kW/cavity (0.5 kW/groove) for KEKB.

>Need to upgrade the power capability by one order of magnitude.

A new design with directly water-cooled SiC absorbers.

KAGEYAMA, T. KEKB Review Feb. 16, 2004

Super KEKB

GBP may evolve into Winged Chamber

Y.Suetsugu et al., "Development of Winged HOM Damper for Movable Mask in KEKB", Proc. PAC2003.

Beam Chamber

Winged chamber loaded with directly water-cooled SiC bullets:

 Developed under collaboration between the KEKB vacuum and ARES cavity groups.

✓ Used in the movable mask sections in KEKB since 2002.

➢ Perform HPT over 5 kW / bullet.

KAGEYAMA, T. KEKB Review Feb. 16, 2004

Super KEKB

Input Coupler Upgrade

Super KEKB

Input Coupler Upgrade (cont'd)

HPT setup

Input Coupler Upgrade (cont'd)

Limited by the S-cav wall power.

Input Coupler Upgrade (cont'd) Super KEKB uest for BSM Before conditioning After conditioning [] ¹⁰ パターンエージング I Temperature rise of the cooling water for the outer conductor ΔT ¹²⁰ 140 160 180 200 220 240 RF input power [kW] 100 TV camera Single-surface MP on the WX77D outer conductor when RF input power = 150~200kW. KAGEYAMA, T. **KEKB** Review

Feb. 16, 2004

Input Coupler Upgrade (cont'd)

HPT setup (future) RF power up to ~1 MW

KAGEYAMA, T. KEKB Review Feb. 16, 2004

Super KEKB uest for BSM

Summary

By increasing U_s/U_a from 9 to 15, the severest CBI (μ = -1) due to the $\pi/2$ accelerating mode can be eased by one order of magnitude and down to τ = 1.5 ms (9.4 A for Super-KEKB LER), manageable with an RF feedback system.

- The fastest growth time of CBI due to the impedance imbalance between the parasitic 0 and π modes is estimated as τ = 4 ms when A-cav is detuned by -710 kHz (9.4 A for Super-KEKB LER).
- We need to upgrade the power capabilities of the WG and GBP HOM loads up to ~80kW and ~20kW per cavity, respectively. The GBP with indirectly water-cooled SiC tiles may evolve into a winged chamber loaded with directly water-cooled SiC bullets.
- Aiming at improvements and upgrades for Super KEKB, HPT'ing of input couplers is being carried out with a new setup using an S-cav. Our immediate target is to suppress the single-surface MP discharge on the outer conductor of the coaxial line, which actually increases the trip rate of the HER RF station D4C.

Summary (cont'd) R&D Status and Plans

A-cav part:

- Fabrication of ARES2K4, a high-power demonstrator (JFY2004).
- HPT and beam test of ARES2K4 (JFY2005).

S-cav:

R&D on high-purity copper plating (ongoing).

HOM Loads:

- Resume the old test stand (Feb. 2003). That is for HPT'ing the current GBP load over 0.5 kW.
- A new test stand with an L-band klystron supplying RF power more than 10 kW (JFY2004).

Input Couplers:

- R&D on TiN coating to the outer conductor of the coaxial line section (ongoing).
- A new HPT setup with use of a S-cav loaded with a 1-MW water load (JFY2004).

KAGEYAMA, T. KEKB Review Feb. 16, 2004

Prototype couplers for Super KEKB (JFY2004).