# Design of Damping Ring

KEKB Review, Kikuchi, M. 2004.2.17

- Introduction
- Beam Parameters
- Lattice design
- DR parameters
- From DR to SuperKEKB
- Summary

#### Introduction

Damping Ring is necessary :

- IR: In SuperKEKB  $\beta$  y\* is squeezed to 3 mm
  - IR design needs lower emittance for the beam (e+)
- C-band linac: lower emittance is needed (e+)
- Beam background: Injected beam-charge is doubled.
  - needed damped beam for smaller energy-tail and emittance-tail. (e+ and e-)

Positron DR is placed before C-band linac: from the layout of linac the energy should be ~ 1 GeV.
Electron DR is preferable from the detector background, though its priority being lower.

 $\diamond$  I will talk only on the positron DR.

Layout of Beam Lines



Beam parameters -1-

#### DR emittance:

IR Design assumed the emittance of injected beam to be  $\gamma \epsilon = 3.13 \times 10^{-4}$  (= emittance of KEKB electron-beam *i.e.* no electron DR)

==> DR emittance < 160 nm (for 1 GeV)

However, considering the possibility of electron DR in far future, the emittance of positron DR should be the same as that of possible electron DR:

Design emittance of positron DR should be smallest value, achievable in the lattice design.

Beam parameters -2-

#### ECS before injection to DR

Employing ECS, almost 100% of particles are included within the energy band-width of  $\pm 1.5\%$ 

(Note momentum acceptance of transport line:  $\pm 5\%$ )



5

### Beam parameters -3-

#### Parameters of injected beam

• Assume two-bunch mode for injection

|                         | before ECS | after ECS | Unit |
|-------------------------|------------|-----------|------|
| Energy                  | 1          | GeV       |      |
| Repetion frequency      | 5          | Hz        |      |
| Emittance               | 1.23       | m         |      |
| Energy spread *)        | 1.30       | 0.406     | %    |
| Bunch length *)         | 2.30       | 6.05      | mm   |
| Number of bunches/pulse | 2          |           |      |
| Bunch spacing           | 98         |           | ns   |
| Bunch charge            | 1.2        |           | nC   |
| ECS cavity voltage      | 30.5       |           | MV   |
| ECS cavity frequency    | 2.856      |           | GHz  |
| R56 component           | -0.486     |           | m    |

\*) defined as extension that contains 95.5% divided by 4.

# Lattice design -1-

Requirements:

- Large acceptance (transverse and longitudinal)
- Fast damping

FODO has advantage that

• Fast damping: bends embedded in every drift space

• Large dynamic aperture (transverse and longitudinal) but has drawback

• Tendency to higher momentum-compaction

We propose a variant of the FODO:

FODO with alternating bend

that preserves good nature of FODO and have a very low positive/negative momentum-compaction factor.

# Lattice design -2-

Thin lens model:



Assumptions:

- equal phase advance  $\mu_x = \mu_y = \mu$
- same bending radius for B1 and B2

 $\theta = \frac{2\pi}{n(1-r)}$ : bend angle of main bend n: number of cells  $\rho$ : bending radius r: ratio of reverse bend to main bend  $\mu$ : phase advance per cell  $E_0$ : beam energy in GeV  $l_1 = 2l_q + 4l_{qb} = 2l - 2l_b$ 

### Lattice design -3-

Momentum compaction factor

$$\alpha_{p} = G(r,\mu)\theta^{2}$$

$$G(r,\mu) = \frac{3 - 8r + 3r^{2} + (1 + r^{2})\cos\mu}{16\sin^{2}\mu/2}$$

When  $r > 2 - \sqrt{3} = 0.268$ there exist a combination of r and  $\mu$ that satisfies  $\alpha_p = 0$  For fixed r, by adjusting the phase advance, low positive or negative  $\alpha_p$  can be achieved.





#### Lattice design -4-

Emittance

$$\varepsilon_{0} = C_{q} \frac{\ell \theta^{2}}{8\rho} \gamma^{2} F(r,\mu)$$

$$F(r,\mu) = \frac{1}{\sin^{2} \mu/2 \sin \mu} \left\{ 3 - 4r + 3r^{2} + (1 - 4r + r^{2}) \cos \mu - r \frac{1 - |r|}{1 + |r|} (3 \sin \frac{\mu}{2} - \sin \frac{3\mu}{2}) \right\}$$

with  $C_q = \frac{55}{32\sqrt{3}} \frac{\hbar}{mc}$ . Since we select  $\mu$  and r such that  $\alpha_p \approx 0$ ,  $\varepsilon_0$  can be rewritten as

 $\varepsilon_0 = C_q \frac{\ell \theta^2}{8\rho} \gamma^2 f(\mu)$ 

• f ( $\mu$ ) has its minimum at  $\mu = 2.1$  (r = 0.35)



## Lattice design -5-

#### Optimization of parameters

• Damping time

$$\tau = \frac{2E_0}{J_x U_0} \frac{C}{c} = \frac{2}{cC_\tau} \frac{\rho}{J_x \gamma^3} \left\{ 2\pi\rho + \frac{1-r}{1+|r|} (n\ell_1 + 2\ell_2) \right\}$$

$$\begin{pmatrix} C_\tau = \frac{4\pi}{3} r_e & \text{n:number of cells} & \ell_1 : (\text{cell length}) - (\text{length of bends}) \\ J_x = 1 & 2\ell_2 : \text{length of straight sections} \end{pmatrix}$$

0

For fixed  $\ell_1$  and  $\,\ell_2\,$  ,  $\rho$  is written as a function of  $\tau,\,r,$  and n:

$$\rho = \rho(\tau, r, n) = \rho(\tau, \mu, n)$$
  
if  $\alpha_p =$ 

• Emittance

#### Lattice design -6-

The emittance at extraction

$$\varepsilon_{\text{ext}} = \varepsilon_0 + (\varepsilon_{\text{i}} - \varepsilon_0) \exp(-2T/\tau) \equiv \varepsilon_{\text{ext}}(\tau, \mu, n)$$

where  $\varepsilon_i$  is the emittance at injection and T is store time.

We optimize the emittance at extraction in  $(\tau, \mu, n)$  space

- Assumption: T = 40 ms (*i.e.*, two bunch-trains)
- For any n, minimum emittance is obtained around ( $\tau = 12 \text{ ms}, \mu=2.3$ )



### Lattice design -7-

- Minimum emittance itself depends on number of cells  $\propto n^{-2}$
- To determine the number of cell, the bend field and the circumference must be taken into account.



# **DR** parameters

|                                  |          | Unit |
|----------------------------------|----------|------|
| Energy                           | 1.0      | GeV  |
| Number of bunch trains           | 2        |      |
| Number of bunches/train          | 2        |      |
| Bunch spacing                    | 98       | ns   |
| Bunch charge                     | 1.2      | nC   |
| Repetition frequency             | 50       | Hz   |
| Circumference                    | 131.3    | m    |
| Energy loss per turn             | 73       | keV  |
| Horizontal damping time          | 12       | ms   |
| Momentum compaction factor       | 0.0019   |      |
| Number of normal cells           | 40       |      |
| Emittance at equilibrium         | 12.2     | nm   |
| Emittance at injection           | 1.23     | um   |
| Emittance at extraction          | 13.7     | nm   |
| Energy spread of injected beam   | 4.06E-03 |      |
| Bunch length of injected beam    | 6.05     | mm   |
| Energy spread                    | 5.29E-04 |      |
| Bunch length                     | 5.03     | mm   |
| Bend-angle ratio of reverse-bend | 0.35     |      |
| Phase advance/cell               | 1.932    | rad  |

• Cavity voltage of 0.26MV is within the spec. of KEKB ARES cavity (0.5 MV/cavity)

|                                       |        | Unit  |
|---------------------------------------|--------|-------|
| Bend field                            | 1.267  | Т     |
| Quad field                            | 16.3   | T/m   |
| Sextupole field                       | 426    | T/m^2 |
| Length of straight sections           | 2 x 6  | m     |
| Length of main bend                   | 0.7286 | m     |
| Length of reverse bend                | 0.255  | m     |
| Length of quad                        | 0.25   | m     |
| Length of sext                        | 0.1    | m     |
| Minimum space between magnets         | 0.1    | m     |
| Cavity voltage for 1.5% bucket height | 0.261  | MV    |
| RF frequency                          | 509    | MHz   |

# DR optics



- Dispersion suppressor: 1 half-length bend + 7 adjustable quads
- Chromaticity correction: 2-family sextupoles

### Dynamic aperture -1-

Tracking simulation results: very large DA

- $(v_x, v_y) = (12.24, 4.26)$
- 4000 turns

• RF bucket height = 4%

- Machine errors (just 1 sample):
  - strength error:  $3 \times 10^{-4}$  for quad,  $5 \times 10^{-4}$  for sext
  - misalignments: 0.5 mm, orbit corrected by correctors



### Dynamic aperture -2-

Tune survey results: wide operational tune space

Without machine errors



# From DR to SuperKEKB -1-

#### Beam transport in longitudinal phase-space

- Bunch length compression to match the subsequent C-band linac.
- Energy spread to meet the aperture of SuperKEKB.



|              | 201181000     | rian o'cann p |           |              |           |          |      |
|--------------|---------------|---------------|-----------|--------------|-----------|----------|------|
|              |               | DR            | after BCS | end of linac | after ECS | after BT | Unit |
| 3.5-GeV case | Energy spread | 0.053         | 0.499     | 0.286        | 0.065     | 0.065    | %    |
|              | Bunch length  | 5.03          | 0.59      | 0.59         | 2.65      | 4.25     | mm   |
| 8.0-GeV case | Energy spread | 0.053         | 0.510     | 0.145        |           | 0.145    | %    |
|              | Bunch length  | 3.54*         | 0.37      | 0.37         |           | 2.96     | mm   |

#### Longitudinal beam parameters

\* For 8-GeV case, the bunch length in the DR was reduced to 3.54 mm by changing RF voltage to 0.5 MV.



The 99.5% of beams are within the assumed acceptance of the ring

The 98.7% of beams are within the assumed acceptance of the ring

### Summary

- 1. We found realistic parameters of ECS in the LTR line.
  - Employing ECS, almost 100% of particles are included within the energy band-width of ±1.5%
- 2. We have proposed new design for the positron Damping Ring, based on the 'Alternating-bend FODO' lattice.
  - Low emittance
  - Low positive/negative momentum compaction
  - Very large dynamic aperture
  - Robust to machine-errors
  - •
- 3. We have found consistent longitudinal beam-parameters from DR to SuperKEKB rings that satisfy the requirement.





- Ring emittance: 24 nm
- $\beta x$  at septum: 100 m