1

Accelerator Laboratory

C-band linac progress: rf source

KEK –High Energy Accelerator Research Organization Accelerator Laboratory

Shinichiro MICHIZONO, for the KEKB-Linac RF Group

◇Overview of C-band rf system
◇Rf system
◇LLRF
◇Driver klystron (Subbooster:SB)
◇High power klystron
◇Compact modulator
◇RF window / resonant ring
◇Performance at KG #44
◇Future works

Overview of C-band rf system

♦ C-band rf system from #3 to #5 sector
 ♦ Forty eight klystrons are installed (instead of 24 S-band klystrons)
 RF System Diagram C-band Plan(example)

LLRF system

SB klystron

- ♦ Return the existing C-band 200 kW klystron for weather observation station (MELCO).
- \Rightarrow Driver klystron (SB) can deliver >100 kW (35 kV).

Accelerator Laboratory

 \diamond Same modulator and HV supply to S-band system is used.

Toshiba E3746 klystron assembly

Accelerator Laboratory

- ♦ Toshiba E3746 klystron (50MW) is adopted.
- \diamond Conventional 1:15 pulse-transformer (used at klystron gallery) is reused.

Requirements for rf source

		S-band	C-band		
RF output		41 MW	40 MW		
Typical charging voltage		42 kV	41 kV		
Typical applied voltage		290 kV	325 kV		
Pulse duration		4 µ s	2μs		
Accelerating gradient		(21 MV/m)	(42 MV/m)		
45					
40					
35	Es=42kV Es=40kV Es=38kV				
<u> </u>					
MW 25					
itput					
ы 20 Ц					
<u>ш</u> 15					
10					
5					
0					
() 100	200 30	00 400 50		

RF input [W]

Compact modulator (1)

♦ Compact modulator is necessary to install 48 units.

7

Compact modulator (2)

♦ By using invertor P.S., the modulator size can be 1/3 (4.7 m->1.8 m).
♦ Present PFN and Thyratron are reused at new modulator.

Inverter Power Supply Development

Accelerator Laboratory

Specifications

- Output voltage
- Output power
- Voltage regulation
- Efficiency
- Power factor
- Switching frequency
- Input voltage
- Cooling
- Weight
- Size

- 50 kV(max.) 30 kJ/s
- $\pm 0.1\%$
- 89%
- 86%
- 33 kHz
 - 420 V, 3 Phase, 50 Hz, AC Water, 4.5 liters/min. 170 Kg 19" rack mount

Switching Power Supply (TDP)

Inverter Power Supply Development-2

Accelerator Laboratory

Applied pulse waveform

- ♦ Flat top: 2 μ s,
- \diamond PFN Impedance: 5 ohms
- ♦ Pulse-transformer 1:15
- \Rightarrow 350 kV at maximum
- ♦ Measured flatness 1.3%(p-p)
- ♦ Stability $\pm 0.15\%$

10

Test stand

Accelerator Laboratory

 \diamond C-band system is installed in the test stand.

 \diamond RF window, dummy load and acceleration structure were tested.

Breakdown of rf window

Accelerator Laboratory

- Breakdown of the rf windows induces
- 1) vacuum leak to the acceleration structure
- 2) rf reflection at the window
- High reliability is required for the rf window.
- The breakdown is initiated by the edge-emission of the ceramics.
 - \rightarrow Lower the electric field at periphery of ceramics (triple-junction).

R&D of c-band rf window

- About Sixty S-band rf windows are successfully operated in KEKB linac. (MTBF > 40,000 h.)
- \diamond Electric fileds should be less than rf windows used in S-band linac.
- ♦ Mix-mode window (TE11+TM11) enables to lower the edge electric field.

♦ Five parameters are optimized for lower electric fields and traveling wave in ceramic.

	S-band	C-band	1.4
Electric field at center of the ceramics [MV/m@50MW]	3.7	3.1	1.3 1.25 1.2 1.2 1.2
Electric field at edge of the ceramics [MV/m@50MW]	1.7	0.8	> 1.15 1.1 1.05
Maximum electric field on the ceramics [MV/m@50MW]	5.5	3.7	1 5.6 5.65 5.7 5.75 5.8 5.85 frequency [GHz]
Band width [MHz] (VSWR<1.2)	600	210	

Mix-mode rf window

♦ Mix-mode (TE11+TM11) window with traveling wave in ceramic.
♦ The electric field at the periphery is half of the S-band window.

Low level measurements

♦ The low power measurements are carried out by bead perturbation method.
♦ The electric fields measured are similar to calculation.

Resonant ring

- \diamond In order to examine the rf window, resonant ring is assembled.
- \diamond Resonant ring consists of hybrid (14dB) and waveguides.
- \diamond Power multiplication ratio is about 18.
- \diamond Rough tuning: spacer in the ring (±5mm)
 - ♦ Fine tuning: frequency $(\pm 5 \text{MHz})$
- ♦ Operation frequency for rf window test is 5710.2MHz (5712MHz-1.8MHz).
- ♦ Evacuated by NEG and ion pumps. (<10⁻⁶ Pa)

9th KEKB Acc. Review Committee Feb.17,2004

Assembly of resonant ring

Resonant ring in the shield

 \diamond Both sides of rf window are evacuated with NEG and ion pumps.

Results at resonant ring (1)

- ♦ Maximum operation power of 160 MW (2 μ s), corresponding to full reflection from the load at the rf power of 40 MW.
- ♦ Radiation level is <1 μ Sv/h, much less than S-band window.

Results at resonant ring (2)

- \diamond RF losses at rf window are measured.
- \diamond The loss is almost same to the S-band window.
- \diamond The C-band window ceramics is 25% thicker than S-band ceramics.
- ♦ 50 MW 2 μ s,50 pps operation will be safe from the view point of heating.

Accelerator Laboratory

Installation to klystron gallery (#44)

♦ RF system moved to klystron gallery on Sep.,2003.
♦ Vacuum pumps are located near the rf windows. (klystron / mix-mode window)

-Rf window

Accelerator Laboratory

Operation status *@* #44

- \diamond RF operation continues more than 100 days.
- \diamond Trips caused by the modulator are 52 for 110 days operation.
- ♦ After the exchange of thyratron, the stability increases drastically (Nov.3,2003).
- ♦ Inverter PS is exchanged on Nov.5,2003 in order to improve the IGBT gate driving circuit.
- \diamond After that the modulator runs rather stably. (but under development)

3

Future works

Accelerator Laboratory

- \diamond 2nd klystron assembly has been tested since Jan.,2004.
- \diamond The conventional oil tank (for S-band) is reused.
- Since the outer diameter is same to the magnet, reinforcement is required.
- ♦ High power test (upto 50 MW) for the klystron assembly (pulse transformer, dielectric insulator, capacitive divider (max.350kV)) will continue.
- ♦ High power resonant ring test will be carried out upto 200 MW. (next April)

