

HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION

Crab Cavities: Cryostat R&D

KEKB Crab Cavity Group NAKAI Hirotaka

KEKB Review Committee/20040216

HIGH ENERGY ACCELERATOR RESEARCH
ORGANIZATION

Overview

- Design of Cryostat
- Parts Fabrication Techniques R&D
- Establishment of Assembly Site

Cryostat Design Constraints

- Accommodation of Squashed-Cell Crab Cavity
- High Pressure Pure Water Rinsing (HPR) Applicable When Cavity Degraded
- Coaxial Coupler Movable for Tuning
- Support & Cooling for Long Coaxial Coupler

Cryostat Design Concept

- Jacket-Type Liquid Helium (LHe) Vessel
- Coaxial Coupler with Bellows
- Stub Support for Long Coaxial Coupler
- Jacket-Type Magnetic Shield around Cavity

HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION Cryostat Design (Top View)

KEKB Review Committee/20040216

NAKAI Hirotaka

6

HIGH ENERGY ACCELERATOR RESEARCH

ORGANIZATION

Cryostat Design (Side View)

KEKB Review Committee/20040216

Cryostat Design (Front View)

HIGH ENERGY ACCELERATOR RESEARCH

ORGANIZATION

KEKB Review Committee/20040216

Analyses of Cryostat Design

- Thermal Analyses
 - Heat Leak to Cryostat
 - Heat Leak Through Tuner
- Structure Analyses
 - Stress of Cryostat (End Shells, etc.)
 - Stress of Stub Support
 - and so on …

HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION Heat Leak Calculation (Top View)

KEK

10

HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION Heat Leak Calculation (Side View)

KEKB Review Committee/20040216

KEK

Tuner and Heat Leak Calculation (Top View)

HIGH ENERGY ACCELERATOR RESEARCH

KEKB Review Committee/20040216

HIGH ENERGY ACCELERATOR RESEARCH

ORGANIZATION

Heat Leak to Cryostat

Heat Transfer Mode	Heat Leak Path			Heat Leak [W]	
Theat manarel mode				To 80 K Region	To 4 K Region
Conduction	Coaxial Coupler	Inner Conductor	Stainless Steel Tube	- /	1.8
			Copper Plating	- //	0.8
		Outer Conductor	Stainless Steel Tube	24.2	1.1
			Copper Plating	5.4	1.5
	Input Coupler	Outer Conductor	Stainless Steel Tube	/13.0	1.0
			Copper Plating	3.2	1.9
	Beam Pipes	Beam Pipes	Stainless Steel Tube	41.2	1.9
			Copper Plating	6.9	1.9
	Tuner	Inner Rods (2 Rods)		1.4	0.1
		Outer Sleeves (2 Sleeves)		3.4	0.3
	Supports	Cavity Supports (4 Wires)		MA-M-	0.6
		80 K Shield Supports		1741	-+
	Plumbing	LHe Transfer Tubes (2 Tubes)		17++	0.7
		Liquid Level Sensor Support		DFI-FT	0.6
		Safety Valve Plumbing		+1+	
	Wiring	Thermocouples, Cables, etc.		HILTI	
Padiation	Vacuum Vessel to 80 K Shield			10.6	$\neg + \downarrow$
Radiation	80 K Shield to LHe Vessel			+ T - L	0.4
Total Amount of Heat Leak				109.3	14.6

Parts Fabrication R&D

- Seamless Copper Bellows for Coaxial Coupler
- End Shells of Cryostat
- Thin Pipes for Beam Pipes & Input Couplers

Copper Bellows - Purposes

HIGH ENERGY ACCELERATOR RESEARCH

 Coaxial Coupler Connection to Cavity

ORGANIZATION

• Tuning with Coaxial Coupler Position

HIGH ENERGY ACCELERATOR RESEARCH

ORGANIZATION

Copper Bellows - Seamless Pipes

Drawing Bench: Capacity 30 tons

Fabricated 5-cell Bellows

KEKB Review Committee/20040216

KEK

End Shells - Dimensions

Vacuum Vessel

Diameter 1200, thickness 2

Liquid Helium Vessel

Diameter 600, thickness 1.5
Diameter 920, thickness 2

HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION

End Shells

Vacuum Vessel End Shell

Liquid Helium Vessel End Shells

Thin Pipes - Dimensions

Input Coupler

Diameter 120, thickness 0.5

Beam Pipes

Diameter 188, thickness 0.8
Diameter 240, thickness 0.8

KEKB Review Committee/20040216

HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION

Thin Pipes - Drawing Bench

Drawing Bench: Capacity 100 tons

KEKB Review Committee/20040216

HIGH ENERGY ACCELERATOR RESEARCH

ORGANIZATION

Assembly Site

Clean Room for Cavity and Cryostat Assembly Ultra Pure Water Plant for High Pressure Pure Water Rinsing

21

KEKB Review Committee/20040216

Summary

- 1st Cryostat Construction in FY 2004
- Parts Fabrication R&D in Progress
- Fabrication of Vacuum Vessel Started
- Collaboration with Mechanical Engineering Center of KEK