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Introduction

Beam-beam limit for head-on 
collision

1. Beam distribution
2. Diffusion couple to radiation
3. Coherent or incoherent

Crossing angle and crab crossing
1. Arnold diffusion due to crossing angle
2. x-y coupling
3. Crab crossing



Beam-beam limit

Super KEKB   I=10A, βy=3 mm
How is large ξy achieved?

We study the limit value of ξy.

Strong-strong and weak-strong simulations 
were used according to circumference.
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One turn map including the beam-
beam interaction
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Beam-beam potential φ
φ: potential given by solution of 2D 
Poisson equation.
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Two methods are used to estimate φ.

1. Gaussian model: ρ is approximated to be transverse 
Gaussian distribution.

2. Particle In Cell method: Particle distribution is mapped 
on a transverse grid space. An arbitrary beam 
distribution can be treated. 



Important parameters

The map is represented by V0, IR and ρ.
Parameters which determine the beam-
beam interaction are tunes, damping time 
and excitation, σz/βy, and the beam-beam 
parameters, ξx+, ξy+, ξx-, ξy- for ideal case.
Other optics parameters (including crossing 
angle)
Nonlinearity of the lattice map.



Simulation
Strong-strong simulation

Mesh 128x256, macro-particle 100,000
Z-slice 5

Weak-strong simulation
Z-slice 5-10, macro-particle 100-10,000

In both simulation, Gaussian and PIC models 
are used: namely we used 4 type of 
simulations according to circumference.
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Change of particle distribution
No coherent motion during the growth 
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Tune scan
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Tune dependence of σxy, kxy
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Summary of Tune scan
Operating point with the best beam-beam 
parameter  (νx ,νy)~(0.51, 0.58).
High ky and low k.
Tune survey
νx~0.51   kx~3-5  kx~3-5
νx~0.52   kx~5-6  kx~1-2
νx>0.53   Horizontal coherent motion
νx>0.55  Clear H motion → low luminosity
Any vertical coherent motion is not seen at 0.5< 
νy <0.65.



Beam-beam limit due to a 
coherent motion

Coherent motion is seen in 
short bunch σz<βy/2, but 
disappear for longer bunch. 
It also disappear for 
separating two tunes. -2e-06
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Coherent or incoherent
Coherent effects means instabilities related to the 
coherent betatron motion.

ω=nωβ++mωβ−+α
A vertical coherent motion determined the beam-
beam limit around ξ～0.05 in 2D simulation.
The vertical coherent motion disappear when the 
bunch length exceeds βy/2 in 3D simulation.
A horizontal coherent motion appears at νx>0.53.
Tune difference, intensity and emittance unbalances 
contribute to suppress the coherent motion.

Incoherent effects determine the beam-beam limit.



Diffusion in Head-on collision
given by the weak-strong simulation

Diffusion is very weak for no 
synchrotron radiation.
If the strong beam is Gaussian, 
diffusion is weak even with 
radiation.
The radiation excitation 
enhances diffusion when the 
strong beam is distorted.
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Diffusion seen in the vertical 
beam size

These pictures 
explain the 
behaviors of ξ seen 
in previous slide.0

1

2

3

4

5

0 10000 20000 30000 40000 50000

si
gy

 (
um

)

turn

Radiation OFF

Radiation ON

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000 40000 50000

si
gy

 (
um

)

turn

Radiation OFF

Radiation ON

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000 40000 50000

si
gy

 (
um

)

turn

Radiation OFF

Radiation ON

Strong beam：Gaussian Solver: Error function & PIC 

Strong beam：distorted beam

PICExact (error func)

PIC



Diffusion in the head-on 
collision

Diffusion is investigated by the weak-strong 
simulations with/without radiation damping 
and excitation.
In Head-on collision, symplectic diffusion 
was very weak. 
Radiation excitation enhances diffusion for 
the distorted beam in compared with 
Gaussian beam.
Perhaps structure of the phase space is 
sensitive for the radiation excitation.



Crossing angle
A kind of dispersion ∆x= ζ ∆z is introduced 
by the crossing angle in the arc transfer 
matrix V0.
Actually small nonlinear kinematical terms 
are included as follows,
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Beam-beam parameter for zero 
and finite crossing angle 

Gauss model              PIC 
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Tune scan
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Tune dependence of σxy, kxy
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Crossing angle dependence
Both simulations showed 
worse behavior than the 
geometrical values.
Weak-strong and strong-
strong simulations showed 
different tendency.
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How do we understand the 
behavior?

Weak-strong and strong-strong simulations showed 
different tendencies.
Weak-strong showed monotonically increase of the H 
and V beam sizes. This is natural, because the strong 
beam is fixed. Note θ=σx/σz~14 mad.
In strong-strong simulation, a vertical enlargement 
occurred even at small crossing angle ~1mad. Arnold 
diffusion due to the crossing angle (see next) may 
enhance the vertical diffusion seen in head-on 
collision.
The enlargement becomes weak for large crossing 
angle >5 mad. Horizontal enlargement may make 
weaken in vertical one.



Diffusion due to crossing angle  
given by the weak-strong simulation (Gauss)

There is diffusion even in symplectic system. 
For φ=15mrad, diffusion at (0.508,0.55)
（present LER) is better than that at 
(0.518,0.58)（HER).

0

0.05

0.1

0.15

0.2

0.25

0 10000 20000 30000 40000 50000

xi

turn

0 mrad

15 mrad

(a) Radiation OFF; Tune=(.508,.55)
0

0.05

0.1

0.15

0.2

0.25

0 10000 20000 30000 40000 50000

xi

turn

0 mrad

15 mrad

(c) Radiation OFF; Tune=(.518,.58)

Strong beam：Gauss Solver： Error function



Diffusion is seen in both of x-y.
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Diffusion for various crossing angle
given by the weak-strong simulation (Gauss)

Vertical equilibrium size obtained by the 
weak-strong simulation and the ratio of 
the diffusions for the rad. damping.
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Diffusion due to x-y coupling 
given by the weak-strong simulation (Gauss)

X-y coupling induces symplectic diffusion.
The diffusion in 3D simulation is stronger than 
that in 2D one.
Stronger coupling induces stronger diffusion 
even in 2D.
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Crossing angle and diffusion
Crossing angle induces Arnold diffusion.
Vertical beam size may be enlarged by the 
diffusion.
The beam size is determined by 
σy

2=(<∆y2(rad)>+< ∆y2(diff)>)*τ(rad)/2T0,
if two diffusions are independent.
The beam size is somewhat larger than the 
evaluation.
Interference between diffusions may exist.
X-y coupling also induces the diffusion.
The diffusion in 3D simulation was stronger 
than that in 2D one.



Crab crossing
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cancelled by a dispersion ∆x= -ζ ∆z given by cab 
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We checked effects of the small kinematical term.

No difference: crab cavity works to cancel the 
crossing angle well.
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set much less than these 
value.
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Summary
We studied the beam-beam limit using vaious simulations.
The beam-beam limit was 0.1~0.15 for super KEKB with 
the crab crossing.
Symplectic diffusion was very weak for head-on collision.  
How is proton beam?
Radiation excitation played important role for the beam-
beam limit.
Crossing angle and x-y coupling induced symplectic 
(Arnold) diffusion.
The beam-beam limit is degraded to be 0.06~0.08 due to 
the crossing angle.
Other errors induce Arnold diffusion.
To go to higher luminosity, the crab crossing and tuning 
are important.


