

Upgrade plan overview

Y. Ohnishi

The ninth KEKB Accelerator Review Committee February 16-18, 2004 KEK

1

Letter of Intent

- LoI consists of physics, detector, accelerator part.
- We submit accelerator part of LoI to KEKB Review committee (complete LoI to LCPAC): "Accelerator Design for a Super B Factory at KEK"
- LoI is in draft stage, however, almost finished.
- This talk is overview of LoI, but all contents can not be covered.

Design strategy

- Target luminosity is $2-5 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$.
 - Original target luminosity is 10³⁵ cm⁻²s⁻¹ even if crab-crossing is failed.
- Re-using components of KEKB as much as possible
- Maintaining acceptable detector backgrounds
- Continuous injection and a powerful injection system
- Low beta function at IP
- Finite-crossing and crab-crossing scheme
- High beam currents

Machine parameters

Parameter		LER	HER	Unit
Beam currrent		9.4	4.1	A
Number of bunches	n _b	50	18	
Horizontal beta at IP	β_{x}	2	0	cm
Vertical beta at IP	β_y		3	mm
Bunch length	σ_{z}		3	mm
Emittance	ε _x	2	.4	nm
Coupling	к	0.75		%
Crossing angle	θ_{x}	30 (crab-	-crossing)	mrad
Momentum compaction	$lpha_{\sf p}$	2.7x10 ⁻⁴	1.8x10 ⁻⁴	
RF voltage	V _c	15	20	MV
Synchrotron tune	ν_{s}	0.031	0.019	
Vertical beam-beam	ξy	0.14 (0.28)		
Luminosity	L	2.5	(5)	x10 ³⁵ cm ⁻² s ⁻¹

Beam-beam parameter is obtained from simulations : strong-strong (weak-strong)

Luminosity considerations

• Fundamental formula for luminosity :

$$L = \frac{\gamma_{e\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \left(\frac{I_{e\pm} \xi_y^{e\pm}}{\beta_y^*} \right) \left(\frac{R_L}{R_{\xi_y}} \right)$$

- Flat beam : $1 + \sigma_y^* / \sigma_x^* \sim 1$
- Reduction factors : $R_L/R_{\xi y}$
- Beam-beam parameter : ξ_{y}
- Vertical beta function at IP : β_v^*
- Beam current : I

(part 1) (part 2) (part 3) (part 4)

Part 1 Luminosity reductions

- The ratio of $R_L/R_{\xi y}$ is larger as crossing angle increases.
- The ratio of $R_L/R_{\xi y}$ is larger as β_x^* decreases.
- The ratio is not big change. $R_L/R_{sy} \sim 0.8$. The change is ~5% at most in a range of machine flexibility.
- Fundamental parameters : $\beta_y^*(\text{and }\sigma_z), \xi_y, T$

Part 2 Beam-beam parameters

- Beam-beam parameter is not a free parameter.
- Finite-crossing angle scheme achieves 0.05 from KEKB experiences.
- Beam-beam limit is 0.05?
- Numerical simulations may help to understand or predict the beam-beam limit .
- Colliding beam, more than 10¹¹ particles, can not be simulated even though using Super-Computer.
- Models are needed and/or must be assumed.
- Weak-strong simulation
 - Gaussian model (beam shape fixed with Gaussian)
- Strong-strong simulation
 - PIC model (beam given by macro-particles; arbitrary shape)

Head-on VS finite-crossing

- Beam-beam limit is ~0.05 for finite-crossing collision from the both simulations. (Not so difference between 11 and 15 mrad)
- Head-on collision much improves beam-beam parameter.
- Discrepancy between W-S and S-S is a factor of 2 for head-on collision.

Crab-crossing

- Finite-crossing angle can provide much benefits;
 - Simple IR design, avoiding parasitic collision etc.
- Crab-crossing restores full luminosity of head-on collision.
- Crab cavity is needed to achieve higher luminosity.
- Beam-beam parameter of <u>0.14</u> is expected. (S-S)

Crab cavity future plans

- Superconducting crab cavity with squashed cell and coaxial beam pipe ($I_b = 1 \sim 2 A$)
- We will start at KEKB-HER with a single crab cavity in the end of 2005.
- Check hardware and modify if necessary.
- Then we will install one crab cavity in LER in 2006 summer.
- Beam will be crabbed in the whole ring. Is this OK ? HOM, RF cavity ?
- If everything is OK, luminosity becomes twice higher than before?
- Simultaneously, we develop new crab cavity for 10 A.

Part 3 Vertical beta function at IP

- Move final focus quadrupoles closer to IP for low beta. $\beta_x^* / \beta_y^* = 20 \text{ cm} / 3 \text{ mm}.$
- Physical aperture
 Beam injection

Good magnetic field quality

- Dynamic aperture
 - Beam injection / Lifetime Small leakage field
- Crossing angle
 - Beam separation / Magnet design
- Synchrotron radiation from IR magnets
 - Heating of components / Detector background

IR magnet layout for SuperKEKB

12

QCS for SuperKEKB and KEKB

IR aperture requirements

 Required acceptance depends on linac beam emittance

- Smaller beam emittance is preferable.
- Positron damping ring (DR) will be constructed prior to IR upgrade.

Injector linac for SuperKEKB

IR aperture requirements (cont'd)

 e^+ Damping Ring \Rightarrow IR upgrade \Rightarrow Linac energy upgrade

e⁻ beam determines IR aperture.

IR magnet design

- QCS (FFQ) and compensation solenoid (ES)
 - We consider that spatial constraints and electro-magnetic force on ES for magnet design.
- Synchrotron lights from QCS
 - Effects of dynamic beta and dynamic emittance
 - Orbit displacement from design orbit (estimated from KEKB experience)
 - P_{SR} =65 kW from QCSL / 179 kW from QCSR
- QC1 (vertical focusing for e-)
 - Two options : superconducting or normal magnet
 - SR from QCS.
- QC2 (horizontal focusing for e⁻ or e⁺)
 - normal magnet
 - SR from QCS.

QCS and QC1(superconducting magnet)

Crossing angle=30mrad, β_x =20cm beam envelope & synchrotron radiation(SR)

pink : SR fans (design orbit)

green : SR fans (inc. dynamic effects and orbit displacement)

Synchrotron light passes through cryostat-bore

IR optics

	LER		
	КЕКВ	SuperKEKB	
β_{x}^{*} (cm)	59	20	
β_y^* (mm)	5.8	3	
β_{x} max (m)	225	729	
β _y max (m)	625	400	

	HER		
	KEKB	SuperKEKB	
β_x^* (cm)	56	20	
β_y^* (mm)	7.0	3	
β_{x} max (m)	484	1600	
β_y max (m)	1225	2025	

Two sextupole magnets in a pair are connected with -I' transformer. Nonlinearities from sextupoles are cancelled. \rightarrow Large dynamic aperture Wide emittance range : 10~36 nm and negative momentum compaction is available. 20

Part 4 Beam current

RF system

- KEKB RF system will be used as much as possible.
- ARES in LER
- ARES + SCC in HER
- Need improvements
 - Modified LER-ARES decreases CBI growth time (0.3 ms to 1.6 ms). Increase energy ratio of U_{storage}/U_{accelerating} from 9 to 15.
 - New HOM dampers
 - New RF couplers
 - Number of RF system will be doubled.

Vacuum system

- Ante-chamber and solenoid coils in both rings.
- Absorb intense synchrotron radiation.
- Reduce effects of electron clouds.

Beam instrumentation

- Beam position monitors
- Bunch-by-bunch Feedback system
 - Transverse
 - longitudinal (Coupled-bunch instability due to RF cavities)
- Gated tune meters
- Synchrotron radiation monitors
 - HER/LER/DR
 - We monitor beam size to optimize luminosity.

Coherent synchrotron radiation

- Numerical simulations with mesh (T.Agoh and K.Yokoya)
 - Analytic formula is not reliable due to strong shielding. $\lambda_c \propto \sqrt{h^3/\rho} \approx 2.5 \text{ mm}$
- Loss factor estimation :
 - No synchrotron oscillation and no interference between bends.
 - 1 V/pC for 6 mm bunch length (LER)
 - 10 V/pC for 3 mm bunch length (LER) \Leftrightarrow 30~40 V/pC in the ring

Conclusion

- ARES and SCC modified to store 9.1 A and 4.1 A.
- IR should be designed to satisfy requirements of low beta at IP, physical and dynamic aperture, SR, detector backgrounds, etc.
- We need precise impedance estimations concerned with HOM.
- We need reliable simulations to estimate beam instabilities, FII, ECI, CSR, etc.
- To overcome electron clouds is the most important issue.
- Factor of 10³⁵ cm⁻²s⁻¹ depends on whether crab-crossing is success or not.
- The luminosity of 10^{35} cm⁻²s⁻¹ is a new frontier of the next generation of B factory.
- SuperKEKB is quite challenging.