Superconducting Magnet for Super-KEKB

Norihito Ohuchi

(1) SC Magnets Design Constraints
(2) Final Focus Quadrupole (QCS)
(3) Compensation Solenoid (ES)
(4) Superconducting Special Magnets (QC1)
(5) Summary and Further Study for SC Magnets

(1) SC Magnets Design Constraints

Magnet-cryostat design was performed under the following spatial constraints;

- Beam envelops (from the beam optics of X=30 mrad and β x=20cm by H. Koiso)
- Synchrotron light envelops (from the estimation by Y. Funakoshi)
- Boundary with Belle detector (same as the present system)

(2) Final Focus Quadrupole (QCS)

- 2 layer coil
- SC cable size : 1.1mm×10mm
- Design current : 3650 A for G=36 T/m
- Magnetic center shift w.r.t. the Belle axis QCSR = 0.0 mm, QCSL = 29.1mm
- 6 layer coil
- SC cable size : 1.1mm×4.1mm
- Design current : 1134 A for G=36 T/m
- Magnetic center shift w.r.t. the Belle axis QCSR = 9.2 mm, QCSL = 21.2mm

KEKB-QCS-cross-section

Parameters of New QCS Design

- 1. 6 layer coils (3-double pane cake coils)
- 2. Inner radius : 90 mm
- 3. Cable size : 1.1mm(W), 4.1mm (H)
- 4. Field gradient =36 T/m @1134A
- 5. Max. field in the coil = 3.74 T
- 6. Effective magnetic length
 - QCSR = 0.333 m
 - QCSL = 0.398 m
- 7. Inductance
 - QCSR = 77.94 mH
 - QCSL = 93.16 mH
- 8. Stored Energy @1134A
 - QCSR = 50.09 kJ
 - QCSL = 59.87 kJ

9. $I_{op}/I_c = 68 \%$ @ 4.7 K 10. Field quality (@ r=55mm) $b_2=10000, b_6=0.16, b_{10}=0.61, b_{14}=0.43$

QCS load line with ESR and Belle fields. The plotted results are calculated by the two dimensional model.

Heat load of the cryogenic system

Cooling capacity of QCS refrigerator

(3) Compensation Solenoid (ES)

Electromagnetic force as a function of the ESR and ESL positions.

ESR Parameters

	ESR-1	ESR-2
Central field w.o.		
Belle field, T	2.98	2.11
Max. field w.o.		
Belle field, T	3.00	2.45
Current Iop, A	619	619
Iop / Ic, %	51	47
Coil		
Inner radius, mm	155	77
Outer radius, mm	165.2	87.2
Length, mm	1050	150

Electro-magnetic force $4.2 \times 10^4 \text{N} \longrightarrow 2.2 \times 10^4 \text{N}$ (0.7×10⁴N for KEKB)

Heat load via support rods in cryostat $3.4 \text{ W}(\text{KEKB}) \longrightarrow 3.5 \text{ W}$

ESL, QCSL and cryostat

ESL Parameters

	ESL-1	ESL-2
Central field w.o.		
Belle field, T	2.23	3.72
Max. field w.o.		
Belle field, T	2.59	4.14
Current Iop, A	615	615
Iop / Ic, %	48	63
Coil		
Inner radius, mm	185	77
Outer radius, mm	194	93.9
Length, mm	519	175
-		

Electro-magnetic force $13.5 \times 10^4 \text{N} \rightarrow 4.8 \times 10^4 \text{N}$ (2.4×10⁴N for KEKB)

Heat load via support rods in cryostat 3.2W(KEKB) —> 4.5W

B_z profile along the Belle axis

Solenoid field distortion in the Belle detector Contour plots: 1.2 T < Bz < 1.7 T

(4) Superconducting Special Magnets (QC1)

OC1R QC1L Coil 2-layer 1-layer Coil inner radius, mm 80.0 31.0 Coil outer radius, mm 84.0 33.0 200 Yoke outer radius, mm 210 Field gradient, T/m 34.0 42.9 0.232 Eff. mag. Length, m 0.266 Current Iop, A 1319 1319 Max. field. T 3.28 1.62 Iop / Ic, % 73 59 Leak field on LER beam, Gauss < 20< 1.5 1.1mm x 1.9mm SC cable (solid composite of rectangular cross section)

Parameters of QC1R and QC1L

(5) Summary and Further Study for SC Magnets

Summary

- QCS
 - New magnet cross section
 - ✓ 6 layer coil (3 double pancake coils)
 - ✓ Magnet current 1134 A for G=36 T/m
 - ✓ Estimated margin of refrigerator=105.6 W (KEKB:72 W)
 - ✓ Field quality by 2 dim. cross section @ R_{ref} =55mm

- ES
 - Compensation solenoid-> two solenoids for each side
 ✓ EMF

ESR= 2.2×10^4 N, ESL= 4.8×10^4 N (KEKB: ESR= 0.7×10^4 N, ESL= 2.4×10^4 N)

• QC1

- Rough calculation of the 2-D cross section $(C_{12})^{2}$
 - ✓ G=34 T/m, $L_{eff.}$ =0.266 m, leak field on LER beam<20 Gauss for QC1R ✓ G=42.9 T/m, $L_{eff.}$ =0.232 m, leak field on LER beam<1.5 Gauss for QC1L

Further study for the SC magnets

- 3-D magnetic field calculation for the all SC magnet
 - \checkmark Field quality of the whole magnet with coil and magnet ends
 - ✓ Maximum magnetic field of each magnet under the combined operation of all magnets
 - \checkmark Electromagnetic force calculation between the magnets
 - \checkmark Quench analysis
- Design of the cryostats and vacuum chambers
 - \checkmark Mechanical and thermal design of the cryostats
 - \checkmark Interference between the cryostats and vacuum chambers