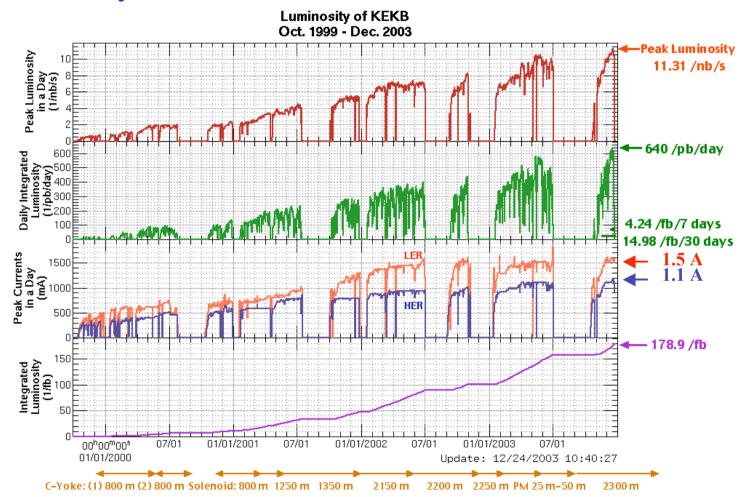
Experiences on High Current


Y.Suetsugu, KEKB

Contents

- Issues in High Current
- Problems due to High Current
 - Vacuum-related
 - **RF-related**
 - Beam Instability
- Summary

Issues in High Current

• History of KEKB

= 2004.2.16 9th KEKB Accelerator Review 2

• Issues in High Current

•SR Power $P = 88.4 \times 10^{3} E^{4} \times I / \rho$ [kW] (total) •For E = 3.5 GeV, I = 2.6 A, $\rho = 14.1$ m \implies Max.15 kW m⁻¹ •Photon Number $N = 8.08 \times 10^{20} E \times I$ [photons s⁻¹] (total) •For E = 3.5 GeV, I = 2.6 A $\implies 3 \times 10^{18}$ photons s⁻¹ m⁻¹ •Gas load

•For η of 1×10⁻⁶ molecules photon⁻¹ \longrightarrow ~1×10⁻⁸ Pa m³ s⁻¹ •Photoelectron emission (LER) •HOM Power $P = k(\sigma_z)I^2\tau_h$ [W]

•For $k = 1 \text{ V pC}^{-1}$, $I = 2.6 \text{ A} \implies P = 14 \text{ kW} (@\tau_b = 2 \text{ ns})$

•Beam Intensity

- •Wall current (~500 A m⁻¹ at peak)
- •Multipactoring (especially in positron ring)
- •RF power [Beam Power]
- •Beam instability

• Beam Currents at Present

	Design		Typical Run	
	LER	HER	LER	HER
Total Current [A]	2.6	1.1	1.5	1.1
Bunch #	~5000		1284	
Bunch Current	0.52	0.22	1.17	0.86

Beam currents are same or near to design value Bunch number is lower than design value (1/4)

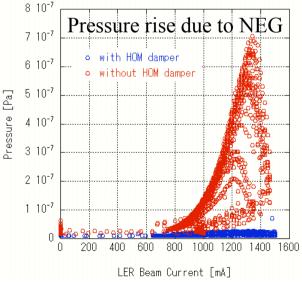
High bunch current

➡ Intense HOM power:

Major issues for hardware at present


• High HOM Power

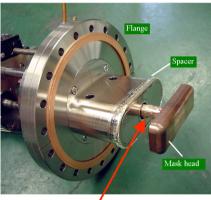
•Heating of bellows and gate valves

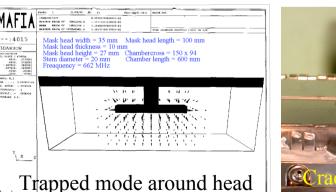

- Bellows near movable masks and IR (big HOM sources)
- Especially for bellows and GV with a race-track cross section or big size
- Shows resonance behavior
- Objects beam injection, Beam oscillation
 - Cooling fan or exchange
 - ➡ Major problems at present

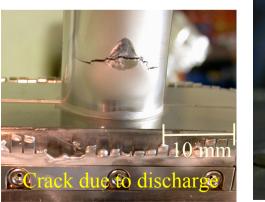
•Heating of NEG elements

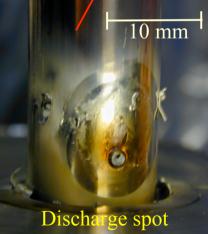
- Near Movable masks
- Abnormal pressure rise
- Affect background
 - HOM absorber
 - RF shield gasket

2004.2.16 9th KEKB Accelerator Review 5

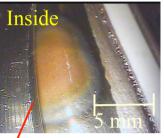

• High HOM Power


 Discharges in early versions of movable masks

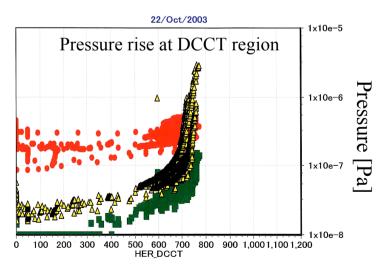

- Trapped mode
- No HOM absorber
- Excess heating & discharge Vacuum leak
 Improvement of structure (version up)


Excitation of synchrotron oscillation

Early versions of MM



• High HOM Power


•Discharge in a test-type DCCT for upgrade

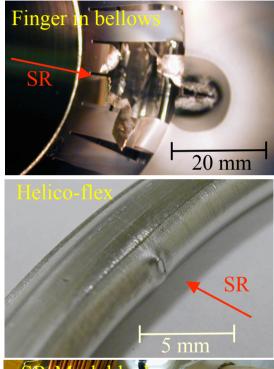
- Test : stain-less steel \rightarrow copper
- Discharges at Kover joint blazed on ceramics ring
- Rapid pressure rise vs. current
 Improve structure
- Rapid pressure rise even for present type
 - Over 1100 mA
 - Similar to test-type
 - keep watching

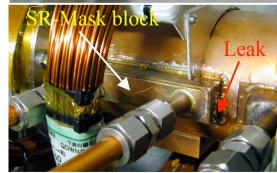
[from M.Arinaga]

2004.2.16 9th KEKB Accelerator Review 7

• High SR Power

•Melting of RF shield of bellows

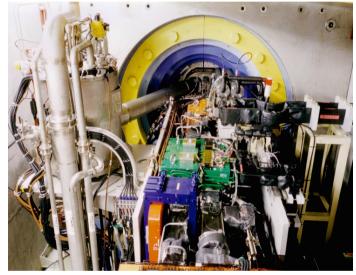

- SR hit RF-shield finger in bellwos \rightarrow Leak
 - Re-alignment of beam chamber
 - Add SR mask at upstream


•Melting of Helico-flex

- SR hit Helico-flex gasket \rightarrow Leak
 - Re-alignment of beam chamber
 - Add SR mask at upstream

▲Vacuum leak at SR Masks

- Welding point of SR-mask block
- Due to heat cycle and defect of welding
 - Exchange of chamber


• High HOM and SR Power at IR

- IR: Complicated configurationDeformation of beam chamber
 - Al chamber at downstream side of IR was heated and squashed by SR
 - ➡ Change structure & material (Cu)

•Heating of bellows and chambers

- Due to mainly HOM
 Increase cooling capacity
- Movement of beam chamber
 - Due to heating by HOM or SR
 - Make collision tuning difficult
 - Cause of slow recovery of luminosity after beam abort ?
 - Feedback movement to BPM signal

Complex at IR

• High Current (Direct damage)

Grooves at mask head

- Damaged by steered beam
 - \square Change material copper \rightarrow Ti
 - Rapid beam abort system
 - ➡ Not completely solved

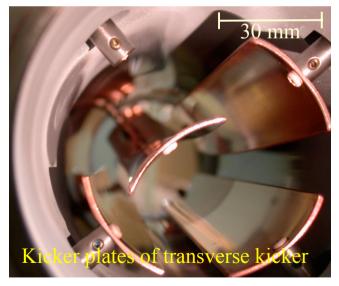
▲Vacuum leak at abort window

- Beams pass just near the wall
- Leak at transition from Al to Ti (window)
- Thermal stress?

➡ Change structure

Discharge at RF-shield

- Discharges due to wall current
 - Change structure & material

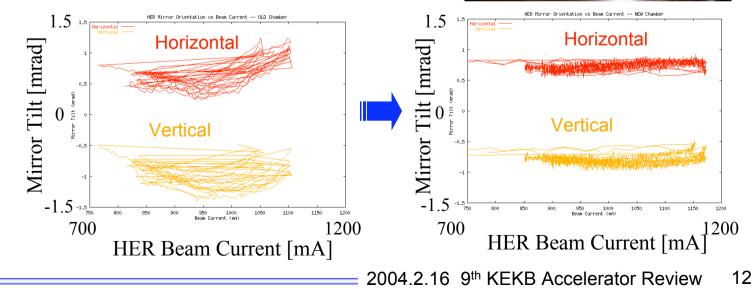


• High Current (Ohmic loss)

•Several problems on transverse kicker [from M.Tobiyama]

- Damage at flexible structure of feedthrough (Ver.1)
- Sagging of kicker plate(Cu), break down of fixing bolt (Ver.2)
- Sagging and annealing of kicker plate (Ver.3)
- Due to large ohm loss
 - ➡ Change of material (Cu+SUS)
 - ➡ Improve flexibility of feedthrough
- •Heating of feedthrough itself is low enough up to now

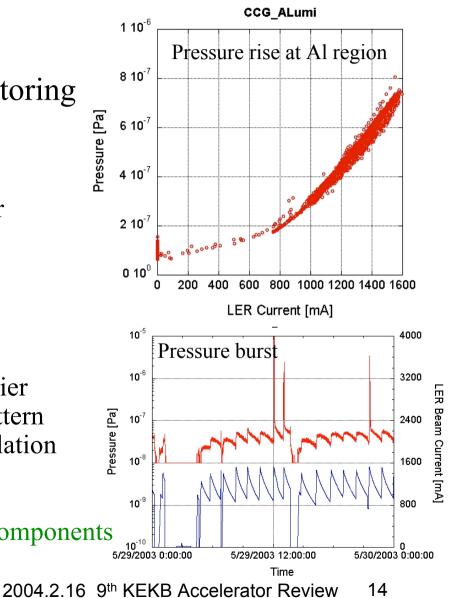
• High Current (Ohmic loss)


•Heating of SR monitor chamber [from J.Flanagan]

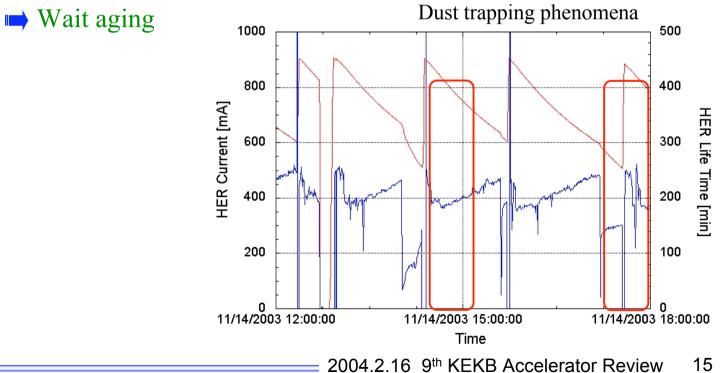
Mirror orientation drift with beam

- Heating at Stainless-steel chamber
- Heating by ohmic loss
- Leads to drift of mirror orientation with beam current

➡ Change to Cu chamber



• High Gas Load • Design : $\Delta P / \Delta I = \sim 1 \times 10^{-10} \text{ Pa mA}^{-1} (\eta = 1 \times 10^{-6})$ • Pumping speed ~ $0.07 \text{ m}^3 \text{ s}^{-1} \text{ m}^{-1}$ with NEG + Ion pump HER Eta Dec2003 LER_Eta_Dec2003_ed 10⁻ 10⁻⁴ 1400 2100 HER LER 10 1200 10⁻⁶ 1800 △P/△/ [Pa / mA] at arc section △P/△I [Pa / mA] at arc section · AP/AI Maximum AP/AI Maximum beam current [mA 10⁻⁶ 10⁻⁶ 1000 1500 10⁻⁷ 10⁻⁷ 800 beam 1200 10⁻⁸ 10⁻⁸ 600 900 current [mA] 10⁻⁹ 10⁻⁹ 400 600 Max. Cur [mA] max.cur **10**⁻¹⁰ **10**⁻¹⁰ 200 300 10⁻¹¹ **10**⁻¹¹ Ω 10³ 10⁰ 10¹ 10² 10⁴ 10⁵ 10⁶ 10⁷ 10² 10⁸ 10³ 10⁴ 10⁵ 10⁶ 10⁷ 10⁰ 10¹ 10⁸ Beam Dose [mA H] Beam Dose [mA H] Almost achieved, but • Scrubbing is slowing down in HER. Why? \bigcirc NEG activation >20 in some regions. Capacity?


• Abnormal Pressure Rise

- •Pressure rise due to multipactoring
 - Observed in whole LER at initial stage
 - Disappeared by solenoid
 - Especially aluminum chamber region now
 - Injection region? (both rings)
 More solenoid
- •Pressure burst
 - Observed at new current frontier
 - Sometimes depends on fill pattern
 - Sometimes causes beam oscillation and abort
 - ➡Wait aging
 - Exchange of suspicious components

• Dust Trapping (electron ring)

- Abrupt decrease of beam life time
 - Sometimes the life time recover soon but sometimes not
 - Usually recovered by re-fill
 - Seen frequently after long shut down (lots of vacuum work)
 - ➡ Improve environment during work

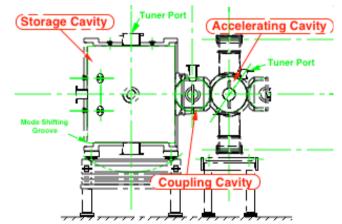
L Issues in RF System

• Necessary RF Power ∝ ~SR and HOM power

•RF power per cavity is large

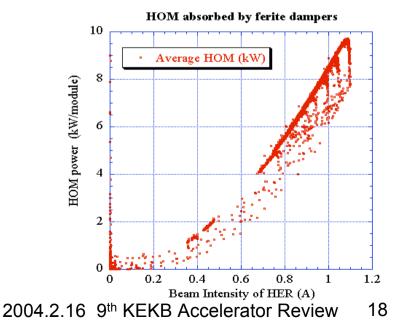
	LER	HER	
	ARES	ARES	SCC
Total Current [A]	1.5	1.1	
# of Cavity	20	12	8
RF Voltage/Cavity [MV]	0.4	0.35	1.4
Beam Power/Cavity [kW]	130	170	300

- HOM due to cavity should be well damped
- Instability due to acceleration mode should be well damped


• ARES Cavity : LER, HER

[from K.Akai]

- •Discharges at input coupler
 - Sometimes lead to vacuum leaks
 - Arc sensors in vacuum and atmosphere
 - Rapid beam abort system
 - Regular maintenance
- Burn out of RF damper at coupling cavity
 - Due to leak of cooling water or bad RF contact at dummy load
 - ➡ Improve temperature monitoring system
 - ➡ Improve RF contact


•No severe troubles these 2 years

- Super Conducting Cavity : HER [from K.Akai, T.Furuya]
- No severe troubles so far
- •Heating of HOM absorber
 - Due to higher bunch current than design value
 - Design: 5 kW ⊨ now:10 kW
 - No problem up to now
 keep watching
- •Coupler
 - ▲ Design: 250 kW/cav.
 mow:300 kW/cav.
 - No problem up to now

 Instabilities Caused by Cavities [from K.Akai]
 I mode coupled bunch instability

 Due to low operating RF voltage
 Expected at ~ 2A, but observed at ~1A
 Prepare -1 mode damper

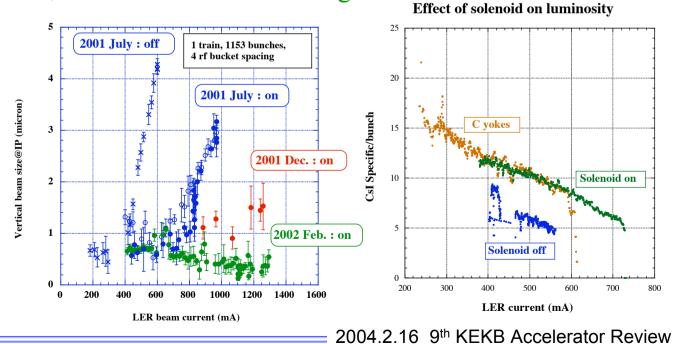
 O mode oscillation and instability

 Due to noise?

- Due to noise?
- Prepare 0 mode damper
- Tuning of RF feed back system
- ➡ Increase RF voltage
- Coupled bunch instability due to HOM of cavities
 - Not observed yet

Beam Instability

• Electron Cloud Effect in LER

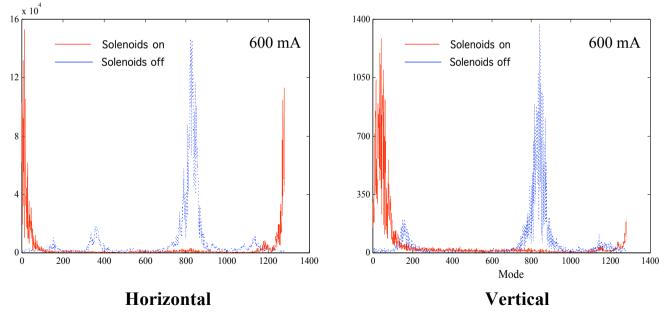

[from H.Fukuma]

Blow up of vertical beam size

- Explained by head-tail instability caused by electron cloud
- Mitigated by solenoid winding, but not perfect yet

20

Continue solenoid winding further


Beam Instability

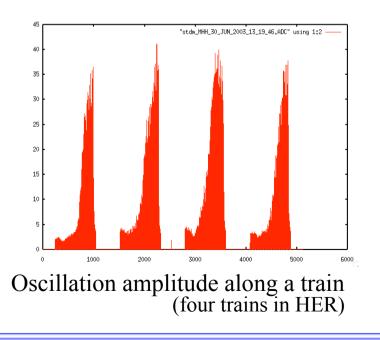
• Coupled Bunch Instability (CBI) in LER

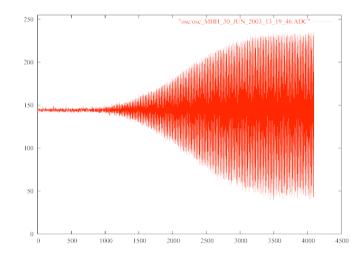
[from H.Fukuma]

CBI has been observed in LER

- Mode spectrum and growth rate depend on solenoid
- Horizontal/Vertical growth rate is 0.5/0.3 ms⁻¹ at 600 mA with solenoid
- CBI is suppressed by a bunch by bunch feedback at present

2004.2.16 9th KEKB Accelerator Review 21


Beam Instability


• Coupled Bunch Instability in HER

• CBI has been observed in HER

[from H.Fukuma]

- Simulation suggests that the horizontal oscillation is caused by CO⁺ ion
- Amplitude grows along train and saturate
- Peak is about 10th revolution harmonics in mode spectrum
- Growth rate is about 10 ms⁻¹ at 700 mA
- Suppressed by a bunch by bunch feedback

Time evolution of oscillation = 2004.2.16 9th KEKB Accelerator Review 22

Summary

- We have experienced various problems in high currents operation at KEKB and learned lots of things.
- Some problems could be avoided by more delicate consideration in design of components and more careful installation of them.
- But others were revealed for the first time under high current and are indications of problems that will appear in higher current operation.
- The important thing is to study and understand the problems accurately, which makes them valuable lessons for us toward future high intensity machines.
- Struggling against high currents will continue for higher luminosity.