Special magnets for SuperKEKB

M. Tawada

Contents

- Design constraints
- Design of special magnets (normal conducting)
- Belle detector and QC1 magnets
- Further study

IR Magnet configuration

Design constraints

	KEKB	SuperKEKB	
longitudinal position of Special magnet		50cm closer to IP	
Crossing angle	22mrad	30mrad	
β_x/β_y	33cm / 1cm	20cm / 3mm	
Damping ring	Unnecessary	Necessary for e+	
SR Power (HER/LER)	27kW (1.1A) / 10 kW (2.6A)	194kW(4.1A) / 78 kW(9.4A)	
Aperture for SR		w/ COD error w/ dynamic effect	
Pole Shape	five septum Q, one half Q	six septum Q	

Design constraints

- Beam aperture for $\beta_x^*/\beta_y^* = 20$ cm/3mm Optics (by H. Koiso)
- Acceptances (w/ damping ring for e+)
- (by Y. Funakoshi)
 - 8 GeV : 1.9×10⁻⁶(Horz) / 8.0×10⁻⁸(Vert)
 - 3.5 GeV : 2.6×10⁻⁶ (Horz) / 1.8×10⁻⁷ (Vert)
- Aperture for synchrotron radiation (by Y. Funakoshi)
 - COD error + $3\sigma_{x/y}$ (w/ dynamic effect)

	Angle error at IP	Offset error at IP	Beam size (w/ dynamic effect)
Horizontal	±0.7mrad	±0.4mm	3σ _x
Vertical	±0.5mrad	±0.2mm	3σ _y

2004.2.17

IR Beta functions, Orbit

2004.2.17

Parameters of special magnets

	Center position from IP(m)	G (T/m)	L (m)	Bore radius (mm)	Space for coil (mm)
QC2LE	6.7	3.37	2.0	50	293
QC2LP	4.3	6.69	0.6	80	189
QC1LE	2.8	15.54	0.64	25	108
		42.9	0.232	31	(super)
QCSL	0.969	34.24	0.418	90	
QCSR	1.163	36.01	0.333	90	
QC1RE	3.8	12	0.75	48	101
		34.0	0.266	80	(super)
QC2RP	5.5	3.05	1.0	40	148
QC2RE	7.2	8.8	0.8	90	206

2004.2.17

QC1LE, QC1RE magnet

QC1LE

QC1RE

G=15.54T/m, L=0.64, R₀=25mm 3turn-8x8-φ5 3920AT, I=1300A, i=30A/mm² G=12.0T/m, L=0.75, R₀=48mm 3turn-9x9-φ6 11050AT, I=3700A, i=70A/mm² P=157kW, water flow: 4m/sec dT=30°C Needs further study

Ninth KEKB Review

2004.2.17

KEKB QC1LE

- Operation current: 2500A Current density: 70A/mm²
- Power 80 kW
- 3 turn coil per pole
- 3 water circuits per pole.
- Water flow speed: 5 m/sec
- Fast protection system against coil burn out.
- Low oxygen water

QC2LP, QC2RP magnet

QC2LP

QC2RP

G=6.69T/m, L=0.6, R₀=80mm 15turn-7x7-φ4 17100AT,I=1150A, i=32A/mm² G=3.05T/m, L=1.0, R₀=40mm 3turn-8x8-φ5 1980AT, I=660A, i=15A/mm²

2004.2.17

QC2LE, QC2RE magnet

QC2LE

G=3.37T/m, L=2.0, R_0 =50mm 8turn-12x12- ϕ 8 3400AT,I=450A, i=10A/mm²

QC2RE

G=8.8T/m, L=0.8, R₀=90mm 16turn-10x10-φ7 28400AT,I=1800A, i=25A/mm²

2004.2.17

Belle and QC1 magnets

Leakage fields for QC1 80 -> 250 Gauss

- Space between QC1 and Belle detector are very tight.
- We need to install He transfer line, support table, vacuum chamber, etc. in this space.

2004.2.17

Further study

- Detailed design of QC1 and QC2.
- Estimation of the leakage field effect on QC1 magnets.
- Interference with the vacuum chambers, Belle detector, QCS helium transfer line, supporting system, etc.