Beam Commissioning with Crab Cavities

12th KEKB Accelerator Review March 19, 2007 Haruyo Koiso

Crab Crossing

orbits of bunch head and tail

Operation History

- Feb. 13 Beam operation started without crab kicks (Crab OFF).
- Feb. 14– Tuning of SR monitors, streak cameras, etc. Aging of crab cavities without beams.
- Feb. 19 First beam with crab kicks (Crab ON). Crab kicks were observed with BPMs and streak cameras.
- Feb. 21 Crab crossing started.
- Feb. 22- Collision tuning with crab kicks. 30 mA in 31 bunches.
- Feb. 27-Mar. 1 Higher total currents 200 mA (LER) / 174 mA (HER) in 1389 bunches. (no collision)
- Mar. 2– More bunches. Max. currents : 75 mA (LER)
 / 50 mA (HER) in 51 bunches.
- Mar. 11 Luminosity 0.55/nb/s

2007.2.13 - 3.19

One Day History 3.11

Machine Parameters

- Crab optics
- Horizontal emittance : LER 18 nm, HER 24 nm
- Tune : LER (45.508, 43.585), HER (45.509, 43.585)
- β_x^* : LER 0.59 \rightarrow 0.84 m, HER 0.56 \rightarrow 0.80 m
- β_{xcrab} : LER 40 \rightarrow 74 m, HER 200 \rightarrow 174 m
- V_{crab} : LER 0.9–1.0MV, HER 1.4 MV
- Currents
 - 75mA(LER)/50mA(HER) in 51 bunches (collision mode)
 - 200mA(LER)/174mA(HER) in 1389 bunches (aging mode)
- Luminosity : 0.55/nb/s (ξy~0.078 preliminary)

Crab Optics since September 2005

Machine Parameters (preliminary)

Date	3/11/2007		11/15/2006		
	\mathbf{LER}	HER	\mathbf{LER}	HER	
Current	0.061	0.033	1.65	1.33	А
Bunches	50 + 1		1388 + 1		
Bunch current	1.20	0.66	1.19	0.96	mA
Spacing	29		1.8 - 2.4		m
Emittance ε_x	18	24	18	24	nm
eta_x^*	84	80	59	56	cm
β_y^*	0.65	0.59	0.65	0.59	cm
Hor. size @ IP	123	139	103	116	$\mu { m m}$
Ver. size @ IP	1.4	1.4	1.5	1.5	$\mu { m m}$
Beam-beam ξ_x	0.112	0.108	0.061	0.040	
Beam-beam ξ_y	0.096	0.078	0.094	0.052	
Luminosity	$0.\overline{55}$		17.11		/nb/s

Specific Luminosity

Tuning items for crab crossing

- Observation of beam tilt with streak camera (H. Ikeda, et al.)
- Adjustment of crab phase
- Adjustment of crab angle (crab voltage)
- Horizontal orbit feedback at crab cavities
- Adjustment of horizontal offset to keep head-on collision precisely
- Adjustment of head-on condition in the vertical plane
 - Reduction of vertical crabbing
- Adjustment of beam optics
 - β_x^* , β_{crab} , horizontal emittance
- Luminosity tuning
 - tunes, orbits, couplings, vertical dispersions, waists, chromaticities

V_{crab} Scan

K. Ohmi, et al. Phys. Rev. ST Accel. Beams 7, 104401(2004) FIG. 6. (Color) Beam-beam parameter ξ_y in x-y tune space. The beam-beam parameter for the crossing angles of 0 and 11 mrad are depicted in (a) and (b), respectively. The contour lines are drawn every 0.01, and lighter gray corresponds to higher beam-beam parameter.

Horizontal Offset

• Luminosity is degraded by small errors in head-on condition, optics, etc.

• H offset must be less than 40 μ m.

• H offset is now adjusted by a feedback so as to keep the horizontal beam-beam parameter constant.

• May need more intelligent feedback.

Crab Angle Check (I)

Reversed LER crab angle

 $0 \bigcirc$

Crab Angle Check (II)

Original directions

Vertical Crabbing ?

V size dependence on the vertical crossing angle should be symmetric at head-on collision.

IP Coupling

normal

physical

$$\begin{pmatrix} X \\ P_X \\ Y \\ P_Y \end{pmatrix} = \begin{pmatrix} \mu & 0 & -r_4 & r_2 \\ 0 & \mu & r_3 & -r_1 \\ \hline r_1 & r_2 & \mu & 0 \\ r_3 & r_4 & 0 & \mu \end{pmatrix} \begin{pmatrix} x \\ p_x \\ y \\ p_y \end{pmatrix} - \begin{pmatrix} \eta_x \\ \eta_{px} \\ \eta_y \\ \eta_{py} \end{pmatrix} \Delta p$$
$$\mu^2 + \det R = 1$$

	LER	HER	LER	HER		
	(set by IP	knob tuning)	(measur	ed at the c	ptics correc	tion)
R1	4.12	4.16	0.01	0.17	mrad	
R2	2.01	-3.96	0.001	-0.07	mm	
R3	63.90	0	-98.5	72.3	/km	
R4	-64.69	128.52	-150.	-23.7	mrad	

How to keep the vertical head-on condition

Adjust R1 of one ring at fixed R1 of another ring to find the head-on condition.

Fill Pattern

51 bunches : 98 sp \rightarrow 49 sp, 8 trains

Plans

- Step I : Continue machine tuning at low currents (~ 75mA(LER)/50mA(HER), 51 bunches) till advantage of crab crossing is clearly observed, or, our tuning ideas for higher luminosity are run out.
 - We have already achieved the vertical beam-beam tune shift parameter of 0.078 in HER, which is higher than our record 0.062 with a correction of the geometric gain.
- **Step II** : Try higher currents for physics run.