Development of Pulsed Quadrupoles

March 19 2007 Toshihiro Mimashi

Contents

Motivation (LER and HER) • The magnet will be installed only in LER in this summer. Pulsed Quadrupoles System Pulsed magnet Power supply Summary and schedule

Motivation (LER)

- Betatron tune changes along the position in the train.
- ->Because of photoelectron cloud, vertical tune becomes higher. (relatively lower tune at the head of train.)
- -> Only bunches at the head of train get into the resonance band and they are lost.

The position dependence of Betatron tune (LER)

Solenoid ON

Measured by Dr.leiri

Lose some bunches at the head of bunch train

HER No Bunch: 1374 Max Current: 83 mA Pilot bunch: 72 m

LER No. Bunch: 1374 Max Current: .87 mA Pilot bunch: .84 mA

1000								
Ĭ.	0	100	200	300	400		500	600
2020								
	700	800		900	1000	1100	1200	
1000								
ž	1300	1400	1500	1600	1	1700	1800	1900
- Skitte		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1						
ĩ	2000	2100)	2200	2300	2400	2:	500
ž	2600	2700	2800		2900	3000	3100	320
- Ali								
13	3200 3	300	3400	3500	3600		3700	3800
-								
÷		4000		4100	4200	4300	4400	
0000								
-	4500	4600	4700	4800) 2	1900	5000	5100

No. Bunch: 1388 Max Current: 92 mA Pilot bunch:

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

LER No. Bunch: 1371 Max Current: 1.27 mA Pilot bunch: 1.09 mA

LER No. Bunch: 1371 Max Current: 1.27 mA Pilot bunch: 1.09 mA

Fill pattern (A seawall pattern)

LER Vertical tune VS Blue Ratio (Luminosity ratio against reference)

Pulsed Quadrupoles in LER

The parameters of LER Pulsed quadrupoles

ΔV	0.005
dBx/dy (T/m)	0.075
βy@magnet (m)	40
Pulse shape	Half Sine
Pulse Width (µsec)	1
Repetition Rate (KHz)	100
Peak Current (A)	100
Magnet Length (m)	0.25
Inductance of the coil (μ H)	4-5

Pulsed Quadrupoles made of Ferrite Core

Ferrite core and the water cooling ceramic chamber

•Ferrite core (TDK PE14) Estimated loss in the core -> 2.3W (100kHz 5mT)

Simulation of magnetic field

Power supply

Difficult points

- Very High Repetition Rate (100kHz)
- Large current (100A)

-> Switching device selection is the most important.
-> 8 series 3 parallel (Total 24) FETs are used.
-> In order to increase the current new type of thyristors will be tested as the switching device.
(2 series 2 parallel : total 4 devices)

Power supply system

Motivation (HER)

 Betatron tune is monitored with noncollision bunch. (Pilot Bunch)

 When we set the HER horizontal Tune lower value, only pilot bunch is lost, while other collision bunches have enough beam life.

Pilot Bunch

HER Horizontal Tune VS Luminosity (Blue Ratio)

HER Pulse magnet(Design)

Δν	0.004
dBx/dy (T/m)	0.18
βy@magnet (m)	30
Pulse shape	Half Sine
Pulse Width (µsec)	1
Repetition Rate (KHz)	100
Peak Current (A)	175
Magnet Length (m)	0.25
Inductance of the coil (μ H)	4-5

Summary and schedule

- The pulsed Quadrupoles has been designed and almost fabricated.
- The magnet will be tested and installed in LER in this summer.
- In order to increase the peak current of the power supply, new switching device will be tested.

Motivation (HER)

Pilot Bunch

Thres(dB)	-35	
Width 0.0	.001	.01
Tune (Low&Up)	.502	.577
B.C. (mA)	.7	.3
Fit Center		.00000

Collision bunches

 Pilot Bunch

 >Betatron tune is monitored with noncollision bunch.

The difference of Betatron tune				
between collision and noncollision				
bunches.				
Tune	Col Bunch - Non Col Bunch			
LER Horizontal	+.002			
LER Vertical	+.014			
HER Horizontal	004			
HER Vertical	+.007			

Pulsed Magnet (LER)

- Ferrite core (TDK PE14)
 - core loss 100kHz-5mT 2.3W
 - core loss 100kHz-50mT 1.3kW