Lattice Design for SuperB

LNF, SLAC, ILC DR group, KEK?

Y. Ohnishi/KEK March/20/2007 The 12th KEKB Review

Topics

- Strategy of SuperB
- Machine parameters
- Lattice issues and Final Focus
- Dynamic aperture
- Summary

Low Emittance and Low Beta Scheme

• Luminosity:

SuperB Workshop at LNF

$$L \propto \frac{N \cdot \xi_y}{\beta_y}$$

• Small emittance and large crossing angle $(2\phi_x << 1)$ to make large Piwinski angle:

$$\varphi = \frac{\sigma_z}{\sigma_x} \tan \phi_x \approx \frac{\sigma_z \cdot \phi_x}{\sigma_x} \qquad \phi_x$$
: Half crossing angle

• Beam–Beam parameters in the case of $\varphi >>1$:

$$\xi_x \propto \frac{N \cdot \beta_x}{\left(\sigma_x \sqrt{1 + \varphi^2}\right)^2} \approx \frac{N}{\left(\sigma_z \phi_x\right)^2} \beta_x$$
$$\xi_y \propto \frac{N \cdot \beta_y}{\sigma_y \sigma_x \sqrt{1 + \varphi^2}} \approx \frac{N}{\sigma_z \phi_x} \sqrt{\frac{\beta_y}{\varepsilon_y}}$$

• If N increases proportionally to $\sigma_z \phi_x$, ξ_y is constant and luminosity increases with $\sigma_z \phi_x$. ξ_x decreases with $1/\sigma_z \phi_x$. (if β_x , β_y/ϵ_y are constant)

Crabbed Waist Scheme SuperB Workshop at LNF

- Waist position is adjusted by kick from sextupoles to suppress hourglass effect. Δs~x/2φ_x
- Small σ_x and large ϕ_x
- Overlap area(longitudinal) of colliding bunches is $\sigma_x/2\phi_x$.

Comparison of Machine Parameters

		SuperB (Upgrade)	SuperKEKB (2006)	
Emittance	ε _x	0.8	9	nm
Horizontal beta	β_{x}^{*}	20	200	mm
Vertical beta	β_y^*	0.2	3	mm
Horizontal beam size	σ_{x}^{*}	4	42	μm
Bunch length	σ _z	6	3	mm
Half crossing angle	φ _x	17	15	mrad
Piwinski angle	φ	25.5	1	rad
Current(LER/HER)	l _b	3.95/2.17	10.4/4.4	A
Luminosity (x10 ³⁵)	L	24	8.25	cm ⁻² s ⁻¹

Machine Parameters of SuperB

SuperB CDR

Parameter	Nominal		Upgrade		Ultimate		l la it
	LER	HER	LER	HER	LER	HER	Unit
Energy	4	7	4	7	4	7	GeV
Luminosity	1x10 ³⁶		2.4x	10 ³⁶	3.4x10 ³⁶		cm ⁻² s ⁻¹
Beam current	2.28	1.3	3.95	2.17	4.55	2.6	A
Number of bunches	1733			3466			
Emittance ϵ_x/ϵ_y	1.6/0.004 Small beam currents 0.8/0.002						nm
Beta β_x^* / β_y^*	20/0.3 are attractive! 20/0.2						mm
Beam size σ_x^*/σ_y^*	5.7/0).035	4/0.020				μm
Bunch length σ_z	6						mm
Full crossing angle $2\varphi_x$	34						
$\underset{\sigma_{\delta}}{\text{Momentum spread}}$	8.4x10 ⁻⁴	9x10 ⁻⁴	1x10 ⁻³				
Momentum compaction $\alpha_{\rm p}$	1.8x10 ⁻⁴	3x10 ⁻⁴	1.8x10 ⁻⁴	3x10 ⁻⁴	1.8x10 ⁻⁴	3x10 ⁻⁴	
Total V _c	6	18	6	18	7.5	18	MV
Energy loss U ₀	1.9	3.3	2.3	4.1	2.3	4.1	MeV
Damping time τ_x/τ_s	32/16		25/12.5			msec	

Characteristics of Ring

• Extremely small emittance

 $\epsilon_x = 0.8 \text{ nm}$

• Extremely small beta function at IP

 $\beta_x/\beta_y=20$ mm/200 μ m

• Large crossing angle at IP

 $2\phi_x = 34 \text{ mrad}$

• Long bunch length

 $\sigma_z = 6 \text{ mm}$

• Crabbed waist optics

Strong sextupole pair at high beta region Need proper phase advance to IP

Layout of Ring

SuperB Lattice with Crabbed Waist

Lattice Design of Final Focus

Lattice Design of Final Focus (cont'd)

Chromatic Effect in Final Focus

The second order chromaticity can be corrected by octupoles.

Arc Cells and Opposite Section of IP

Wiggler/RF Straight Section

Sextupoles for Crabbed Waist

Chromaticity Correction with Crabbed Waist

Dynamic Aperture

Phase Space: Crabbed Waist OFF

Phase Space: Crabbed Waist ON

Amplitude vs Tune dependence

When fringe effects is turned off for all magnets, amplitude dependence is disappeared. But separatrix is similar and dynamic aperture is not improved at all. Transformation (Sextupole to IP):

$$\exp(-:F_{3}:)\exp(-:\psi J:) = \exp(-:\psi J:)\exp(-:k_{x}X^{3} + k_{y}XY^{2}:)$$

$$X = \frac{x}{\sqrt{\beta_{x}}} \qquad P_{x} = \frac{\alpha_{x}x + \beta_{x}x}{\sqrt{\beta_{x}}} \qquad k_{x} = \frac{\beta_{x}^{3/2}K_{2}}{6} \qquad k_{y} = \frac{\beta_{x}^{1/2}\beta_{y}K_{2}}{2}$$

$$F_{3} \approx C_{X^{3}}X^{3} + C_{X^{2}P_{x}}X^{2}P_{x} + C_{XP_{x}^{2}}XP_{x}^{2} + C_{P_{x}^{3}}P_{x}^{3}$$

$$+ C_{XY^{2}}XY^{2} + C_{XP_{y}^{2}}XP_{y}^{2} + C_{XYP_{y}}XYP_{y} + C_{P_{x}Y^{2}}P_{x}Y^{2} + C_{P_{x}YP_{y}}P_{x}YP_{y} + C_{P_{x}P_{y}^{2}}P_{x}P_{y}^{2}$$

- Coefficient of XP_Y² (crabbed waist):

$$C_{XP_{Y}^{2}} = \sum_{i} \frac{\beta_{x,i}^{1/2} \beta_{y,i} K_{2,i}}{6} \left(\frac{1}{2} \cos \psi_{x,i} - \frac{1}{4} \cos (\psi_{x,i} - 2\psi_{y,i}) - \frac{1}{4} \cos (\psi_{x,i} + 2\psi_{y,i}) \right)$$

- Coefficient of X³:

$$C_{x^{3}} = \sum_{i} \frac{\beta_{x,i}^{3/2} K_{2,i}}{6} \left(\frac{3}{4} \cos \psi_{x,i} + \frac{1}{4} \cos 3\psi_{x,i} \right)$$
 IP
SCW1 Arc FF

	Crabbed Waist sextupole (SCW1)	Arc(SCW1→IR)+FF sextupoles	*Sextupoles in FF are connected
X ³	65 🔶	> 12	with –l'.
XP _Y ²	2227	148	

Summary

- Lattice of SuperB is designed for:
 - very small emittance;
 - Final Focus with very small beta functions at IP;
 - use of the PEP-II available magnets as much as possible.
- Crabbed waist is one of the most important issues.
- Dynamic aperture without crabbed waist sextupoles is fairly good as far as squeezing beta at IP very small.
- Dynamic aperture with crabbed waist is reduced by ~1/5(depends on strength of crabbed waist sextupoles).
 On-momentum aperture becomes small.
- In the crabbed waist scheme, good solution to keep large dynamic aperture has not been found so far.
 - Nonlinearity limits the dynamic aperture.
- How to control the nonlinearity ? Combination of sextupoles can cancel it ? This issue is under study.