

Recent Upgrade Studies of Vacuum Components

Y. Suetsugu KEKB Vacuum Group

Contents

- Introduction
- R&D for
 - Beam Duct
 - Connection Flange
 - Bellows and Gate Valve
 - Movable Mask (Collimator)
- Summary & Future Plan

Introduction

- R&D on vacuum components to meet the demands for future high-current accelerators has been progressing using intense beams of the KEK B-factory ring (KEKB).
 - Low Energy Ring (LER): 3.5 GeV, Max.1.8A (1389 bunches)
 - High Energy Ring (HER): 8.0 GeV, Max.1.4 A (1389 bunches)
- Studied Components:
 - Copper beam ducts with one or two ante-chambers.
 - Special connection flange with no gap at the connection point.
 - Bellows chambers and gate valves with high thermal strength and low beam impedance.

Next alks

- ^{xt} Inner surfaces with a low secondary electron yield (SEY).
- Movable mask (collimator) with low beam impedance.

- Beam duct with ante-chamber (2003 ~)
 - Ante-chamber = additional chamber
 - Effective to reduce photoelectrons in the beam channel
 - Also effective to dilute the power density of SR
- Use copper

- Copper ducts with an antechamber for arc sections (2003~)
 - Manufacturing properties were investigated.
 - Installed at an arc section of the KEKB positron ring
 - Electron number was estimated using a electron monitor.

MAC2007, KEK

Large reduction of photoelectron was found.

Electron Monitor (DC, Collector:+100 V, Repeller:-30V)

2007/3/19

- Copper duct with two ante-chambers (2005~)
 - Installed into the LER wiggler section
 - ~3.6 m, with NEG strips, by pressing method
 - Reduction of photoelectrons was again confirmed.
 - No problem up to 1.7 A.

- This year, a part of Nikko wiggler section will be replaced by beam duct with ante-chambers.
 - ~30 m in total, ϕ 90 mm, h_a=110 mm
 - Including Q-chambers with BPM
 - Manufacturing is now proceeding by cold drawing method.

- Cold drawing was successful.
 - More accurate than pressing method
 - Cost ?

- Beam ducts will be coated by TiN.
 - Coating station is now being set up at an experimental hall.

Connection Flange

(2004~)

MO (Matsumot-Ohtsuka) type flange

- Seal a vacuum at only the inner surface.
- Vacuum seal doubles as RF bridge.
- No gap and step at the inner surface.
- Can follow the complicated cross section.

Applied to beam ducts with ante-chambers

Rectangular model (for waveguide)

Connection Flange

- Stainless-steel flange and copper gasket (annealed)
- 180x340 for ϕ 94 antechamber, 28 M8-bolts along aperture

Trial models (only flanges)

- Vacuum seal at a torque of ≤ 18 Nm
- No problem after baking (200°C)

Connection Flange

Application to bellows chambers and beam ducts (2005~)

- No problem up to 1.7 A (8 flanges)
- Applied to new test chambers for wiggler sections, and will be tested this year (28 flanges).

MO flange for beam duct

MO flange for bellows chamber

- Comb-type RF-shield (2003~)
 - Proposed at KEK
- Nested teeth instead of fingers
 - High thermal strength
 - Small leakage of HOM(TE-mode)
 - Low beam impedance
 - Applicable to various apertures
 - Limited offset
 - Complicated structure

- 150 x 50 mm racetrack, Comb-Ver.2
- No problem up to 1.4 A (HER)
- Temperature rise decreased to 1/3 of that of the conventional bellows.

150x50 mm L = 200 mmVer.2

- Bellows for a beam duct with ante-chambers (2005~)
 - Easy to apply to a complicated cross section (Comb-Ver.2)
 - No problem up to 1.7 A.
 - Inside was checked this winter, and no damage was found.

 $\phi = 94 \text{ mm}$

L = 95 mm

Ver.2

- Circular gate valves (2005~)
 - Comb Ver.2 = No sliding point
 - Collaboration with VAT Vakuumventile AG.
 - Temperature rise of body decreased to 1/3.

Inside view

Gate valve for a beam duct with two antechambers (2007)

in and in the second

- For the LER wiggler section, ϕ 94
- Comb-Ver.2, and MO-Flange
- Will be installed this summer, and tested.

Inside view

Whole view

- Proposal: Stealth type [Ver.6] (2003~)
 - Ceramic support →Little interference with beam With thin metal coating to avoid unwanted charge up of head
 - Ceramic or carbon head → Little damage by beam
 - HOM absorber (SiC) → Damp trapped modes
 - Similar idea to an "invisible electrode" by F. Caspers (1987)

- Calculation of RF properties (by Microwave Studio, Mafia)
 - Impedances and Q of trapped modes, loss factors
- Ex. Trapped modes:
 - Two trapped modes (Mode 1 and Mode 2) were found.
 - Mode 1 (~0.7GHz) disappeared for ceramics support.

Ex. Calculation of longitudinal Impedances (R_s) and Q

- Ex. Calculation of Loss factor
 - Loss factor decreases as increasing the resistivity of coating on support.
 - Loss factor is about 1/4 of the present Ver.4 mask at $\sigma_z = 4$ mm, when the coating is 1 μ m titanium, for example.

- Ex. Estimation of head temperature
 - Total power ~ 50 W even at 10 A (#5000) \rightarrow ~ 900 °C at ε = 0.2
 - May be OK, but with large ambiguity.....

- Only radiation
- Joule loss (Cu)
 - ~30 W
- Trapped mode: Mode 2
 - ~25 W (total)
- Trapped mode: Mode 1
 ~0
- High frequency components
 - Will propagate.....

- Bench test using a test model
 - An atmosphere version was manufactured to check the calculation, and to see the manufacturing property.
 - Measured behavior of trapped modes were well consistent with the calculated one.

- First trial model for beam test
 - A vertical mask for LER was installed this winter.
 - Al_2O_3 head with Cu coating (~10 μ m)
 - Al_2O_3 support with Ti coating (~1 μ m)
 - Beam test has just begun.

Mask Head

2007/3/19

KEKB uest for CPV

27

- Mask looked working
 - Decrease of beam life time was observed as the head approached to beam.
- Average temperatures of 4 bellows of 4 V-masks
 - Beam current is still low, but an indication

of HOM reduction can be seen (?)

Note: Different bunch patterns and positions

Radiation thermometer

- Problem: Heating of head!
 - Measured by a radiation thermometer
 - Much higher than expectation: by dozens of times!!

- T>600°C even at 40 mA (51 bunches) [~2007/3/3]
 - T (reading) relatively decreased around 2007/3/3 for the same current
 - \rightarrow Cu and Ti coatings had gone??
- Input power is about 14 W at 60 mA (51 bunches)
 - Estimated from T decay after a beam abort 28

- Main input power source is HOM!
 - T^4 is proportional to I^2/N_b .
 - T depends on the position of mask head.

- If the loss factor is 0.2 V/pC, HOM loss is 150 W at 60 mA (#51)
 - \rightarrow About 10 % was absorbed by head
- Affect of HOM from other masks is also included
 - T depends on the position of the next mask
- I_b = 300 mA (#300) → T =900 °C
- I_b=1600 mA (#1389) → T=1500 ° C!!

Keep watching!

- Further studies are required;
 - Understand the reason of misestimation of input power
 - High frequency HOM?, HOM from outside?
 - Optimization of structure to reduce HOM loss
 - Are SiC actually required?, Surface area, ɛ and loss?
 - Optimization of materials
 - Return to the original idea? Graphite head (high emissivity and high thermal strength) and BN support (low dielectric constant)?
 - Coating will be practically no use.
 - High temperature is structurally inescapable for use.
 - How much is the affect of charge up?
 - Long term stability ?

Got off to a rocky start?

Summary and Future Plan

- R&D of various vacuum components to adaptable to high current accelerators are proceeding using KEKB.
 - Beam duct with ante-chambers has been developed for wiggler sections, together with bellows chambers and flanges.
 - Application of bellows chambers and gate valves with the comb type RF-shielding is expanding.
 - The first trial model of a new movable mask is under test with beam.
 - Way of mask is not that easy...

Summary and Future Plan

- Replacement of the present circular beam ducts at a wiggler section (~30m) by that with antechambers [this summer], including BPMs.
- Further test and optimization of the new movable mask.
- R&D of a clearing electrode for ECI (plan).
- More practical design of beam ducts for Super B

Measured electron current can be reproduced by a simulation,

Measured electron current can be reproduced by a simulation,

