RF Design of Crab Cavity

Parasitic modes in the coaxial coupler Modifications of the coaxial coupler Stop band of the notch filter Rotation of the notch filter HOM measurement HOM power estimation

Yoshiyuki Morita Mar. 19, 2007 Accelerator Review Committee

Parasitic modes in the coaxial coupler

-Straight coaxial coupler design-

Mode	Freq.(MHz)	R/Q	Q
1/4λ	595	5.7	106
3/4λ	602	0.17	9000
5/4λ	616	1.24	3000

- Coaxial coupler has parasitic modes like a quarter wave resonator.
- These parasitic modes are very dangerous because of its high Q values.
- The most dangerous mode is the horizontally polarized TE- $\lambda/4$ mode.

Modifications of the coaxial coupler

Three modifications were applied to damp this mode.

- 1. Tapered coupler design for lower cut-off.
- 2. TE stop band splitting of notch filter.
- 3. Tip cutting design to raise freq. of TE-1/4 λ -H mode

Comparison of TE-1/4 λ -H mode damping

Туре	f	R/Q(MWS)	Q(HFSS)
Straight	595 MHz	5.7 Ω	10 ⁶
Tapered	602 MHz	5.2 Ω	5800
Tapered + tip cutting	607 MHz	2.1 Ω	2700

Stop band splitting design of the notch filter

Notch filter: reject TEM-coupled crab mode

Partitions

Stop band		
(H-V splitting)		
TEM	509 MHz	
TE(H)	650 MHz	
TE(V)	570 MHz	

Notch filter has stop band for TE mode. An axially-symmetric design has a stop band around 630 MHz. This stop band is close to the TE-1/4 λ -H mode.

A stop band splitting notch filter has partitions in mid-plane to separate stop bands.

Dipole HOM (Vertical Polarization)

New idea: Rotated notch filter

Q and R/Q of $\lambda/4$ -H, $\lambda/4$ -V and TE101 modes

R/Q

Mode	0 deg.	45 deg.	90 deg.
I/4-H	5.24	5.32	5.36
I/4-V	4.98	5.30	5.17
TE101	10.3	10.1	10.8

R/Q: no change

We applied 60° rotation angle

Tip cutting design Q of $\lambda/4$ -H = 2700 R/Q of $\lambda/4$ -H = 2.1

Q value of the $\lambda/4$ -H mode significantly decreases as rotating the notch filter.

Growth time

HOM/LOM measurement

Measurement Result (HER at RT)

H-port

Measurement Result (HER at RT)

V-port

Summary of measurement

-HER crab cavity at RT-

mode	R/Q	f and Q at 0° *	f and Q at 60°
LOM	80.1	409 / 164	409 / 142
λ/4-H	5.24	604 / 1257	603 / 893
λ/4-V	4.98	597 / 394	594 / 1329
TE101	10.33	642 / 327	643 / 721

*coaxial coupler: not at designed position

Acceptable for KEKB

Model cavity

Recently a model coupler was made to check the mode damping scheme.

Summary of measurement

-Comparison with calculation and model measurement-

Rotation angle: 0°

mode	f and Q (calc.)	f and Q (HER)*	f and Q (model)
LOM	406 / 48	409 / 164	407 / 131
λ/4-Н	602 / 5774	604 / 1257	602 / 1775
λ/4-V	597 / 1681	579 / 394	601 / 486
TE101	641 / 181	642 / 327	646 / 305

Rotation angle: 60°

*coaxial coupler: not at designed position

mode	f and Q (calc.)	f and Q (HER)	f and Q (model)
LOM		409 / 142	407 / 133
λ/4-H	603 / 1687	603 / 893	602 / 886
λ/4-V	596 / 958	594 / 1329	600 / 653
TE101	642 / 850	643 / 721	647 / 889

Further investigation with model cavity

HOM Power

Power Flow Estimation

- Monitor E and B fields during beam passing
- Calculate the Poynting vector
- Integrate the Poynting vector on the monitoring surface

Power flow

Expected HOM Load

Capability up to 18 kW (Mitsunobu et al)

Summary

- Parasitic mode damping of the coaxial coupler
 - Rotation of the notch filter improves mode damping
 - Optimum rotation angle found
 - No need for tip cutting design ?
- HOM/LOM measurement
 - LOM: Q=142, larger than calculated Q value
 - $\lambda/4$ mode at 60°: consistent with calculation
 - $\lambda/4$ mode at 0°: significant discrepancy with calculation
 - Further investigation with a model cavity
- HOM power estimation
 - LBP: 6.4 kW, coax: 1.4 kW (1A, 1400 bunches)