Tune/Orbit Measurements

T. Ieiri

Thankful contributions by:

H. Fukuma, Y. Funakoshi, M. Masuzawa, Y. Ohmi, Y. Ohnishi and M. Tobiyama

Topics I : Measurement of Beam-Beam Kick (page 2 to 10)

Topics II : Study on Beam-Beam Tune Shift (page 11 to 21)

Topics III : Bunch-By-Bunch Orbit Measurement (page 24 to 30)

Topics I : Measurement of Beam-Beam Kick

What to be done:

• The effective horizontal beam size at IP was measured using a linear part of a beam-beam kick under various conditions.

Outline:

- Beam-beam kick detection
- Measurements with calculation
- Crab ON/OFF
- Emittance change
- Intensity change
- Summary

Beam-Beam Kick Detection 1

• Beam-Position Shift at Detector

$$\Delta X_{\text{det.}} = \frac{\sqrt{\beta_{\text{det.}} \beta_x^*}}{2 \sin(\pi \nu)} \theta_{b-b} \cos(\pi \nu - |\Delta \varphi_{\text{d}}|)$$
$$\Longrightarrow \quad \Delta X_{\text{det.}} \propto \theta_{b-b}$$

• Beam-beam Kick (Rigid Gaussian) Δ_x : Horizontal Offset

$$\theta_{b-b} = \frac{-2r_e N_b}{\gamma} \Delta_x \int_0^\infty \frac{\exp(-\frac{\Delta_x^2}{(t+2\Sigma_x^2)})}{(t+2\Sigma_x^2)^{3/2}(t+2\Sigma_y^2)^{1/2}} dt \qquad \Delta_y = 0$$

$$\theta_{bb}^{+} \approx \frac{-1.94 \cdot r_{e} N^{-}}{\gamma^{+}} \frac{\Delta_{x}}{\Sigma_{x}^{2}} \qquad \Longrightarrow \qquad \frac{\theta_{bb}^{+}}{\Delta_{x}} \propto \frac{N^{-}}{\Sigma_{x}^{2}} \qquad \left|\Delta_{x}\right| < \Sigma_{x}$$

• Effective Horizontal Size at IP

$$\Sigma_x = \sqrt{(\sigma_x^+)^2 + (\sigma_x^-)^2}$$

Chynamic Beta> $\beta_{det}, \beta_x^* \approx 16$ $\beta_{det}, \beta_x^* \approx 16$

Beam-Beam Kick Detection 2

<How to detect beam-beam kick>

- Gated BPM can detect the beam position of a specific bunch.
- Compare the position of between a colliding and non-colliding bunches during the orbit scanning at IP.

<Performance of G-BPM>

Pick-up	Button
Detector Bandwidth	508 +/- 30 MHz
Resolution	20 μm @turn-by-turn
of Position	3 ~ 5 μm @average
and Phase	0.3 deg. @turn-by-turn
Isolation of Gate	40 dB @ 3-bucket spacing

<Gated Beam-Position Monitor at FB4> Start Pulse - 1 of 4 Channels -SN 1/0 ATT. GATE BPF.AMP. Démodulator COS 4Gate Pulse Delav F/508MHz Module Phase Shifter Rev/100kHz LPF: Low Pass Filter ATT: Attenuator BPF: Band-Pass Filter

<Optics Parameter at Pickup>

	LER	HER	
	QV1P.2	QX6E.2	
β_x (m)	22.38	43.05	
β_y (m)	22.50	4.34	
φ_x from IP	22.68	23.33	
φ_y from IP	21.67	21.51	
η_x (m)	<0.001	<0.001	

Measurement with Crab Cavity ON/OFF

$\varepsilon_x L/H=18/24 nm$

OFF

Ratio of

Slope:

 $\frac{\Delta x_{x'=0}}{\Delta k} = 2.14$

 Δk

 $\Delta x x'=11$

- Horizontal effective size at IP reduces to 72% by the crab.
- HER current was lost from 15 to 13.5 mA during scan.
- Horizontal offset agrees with the orbit displacement at IP within 10%. (by Masuzawa)

Emittance Change under Crab ON

Result:

- Effective horizontal size at IP reduced to 77%.
- An expected reduction value is 93%. (No beam-beam effect)

Intensity Change under Crab ON

ε_x L/H=24/24 nm V_{crab}: 1.45/0.85 MV

<Calculated Effective Size>

Result:

- The measured size agrees with the calculation.
- However, the local peaks of the beam-beam kick curve indicate a very small size of $\Sigma_x = 95 \ \mu m$. ? Note a local peak takes place at a size of $1.32\Sigma_x$.

Result:

- In the large offset region, the kick data deviates from a Gaussian.
- Does a beam profile change?

Summary 1

• The horizontal effective beam size at IP was estimated from a linear part of beambeam kick around the center.

Results are:

- Effect of Crab Cavity: $\Sigma x=230 \text{ mm(OFF)}$, $\Sigma x=167 \text{ mm(ON)}$
- Effect of Emittance: $\Sigma x=188 \text{ mm} (24 \text{ nm}) \rightarrow 144 \text{ mm}(18 \text{ nm})$
- These estimated sizes are consistent with the expectation.
- However, the estimated size from the local peaks indicates a very small size. The beam-beam kick curve deviates from a Gaussian in a large offset region.
 One speculation is a change of a beam shape or the size during the scanning.
 - The reason is unclear.
- The calculation shows that the crab cavity switching from crossing collision to headon collision reduces the effective horizontal size to 56 to 77 %.
- The crabbing effect depends on an original beam size.

Topics II : Study on Beam-Beam Tune Shift

Motivation:

- Coherent Tune Shift in a Two-Ring Collider
- Energy asymmetry and Different tune
- Dynamic Effects
- Decreasing the specific luminosity, Beam-beam limit?
- Short lifetime at high current, What happens in collision?

Outline:

- Beam-beam parameters
- Nonlinear resonance in the tune spectrum
- Measurement of coherent beam-beam tune shift
- More observation of the spectrum
- Summary

Luminosity and Vertical Beam-Beam Parameter

$$L = \frac{N^+ N^- f_0}{2\pi \Sigma_x \Sigma_y} R \qquad \qquad \mathsf{R: Reduction factor}$$

$$=\frac{f_0}{r_e}(\frac{N^+\gamma^+N^-\gamma^-}{N^+\gamma^++N^-\gamma^-})(\frac{\Xi_x^+}{\beta_x^+}+\frac{\Xi_x^-}{\beta_x^-}+\frac{\Xi_y^+}{\beta_y^+}+\frac{\Xi_y^-}{\beta_y^-})R$$

$$\begin{split} L &\approx \frac{f_0}{r_e} (\frac{N^+ \gamma^+ N^- \gamma^-}{N^+ \gamma^+ + N^- \gamma^-}) (\frac{\Xi_y^+ + \Xi_y^-}{\beta_y^*}) R \qquad \beta_x >> \beta_y \\ &= \frac{f_0}{r_e} (\frac{N^+ \gamma^+ N^- \gamma^-}{N^+ \gamma^+ + N^- \gamma^-}) (\frac{\overline{\xi}_y}{\beta_y^*}) R \end{split}$$

$$\begin{array}{ccc} \text{Luminosity} & \longrightarrow & \overline{\xi}_y \\ & \Delta v_{bb} & \longrightarrow & \Xi_q^+ + \Xi_q^- \end{array}$$

Coherent Beam-Beam Parameter:

$$\Xi_q^{\pm} = R_q^{\pm} \frac{r_e}{\gamma_{\pm}} \frac{\beta_q^{\pm}}{2\pi \Sigma_q (\Sigma_x + \Sigma_y)} N_{\mp}$$

Beam-Beam Tune Shift:

 $\Delta v_{bb} = v_H + v_L - v_0^+ - v_0^-$

Intensity Parameter, Ny:

$$F(N\gamma) = \frac{N^+ \gamma^+ N^- \gamma^-}{N^+ \gamma^+ + N^- \gamma^-}$$

Beam-Beam Parameter and Tune Shift:

$$\overline{\xi}_q = \Xi_q^+ + \Xi_q^- = \frac{\kappa(\nu_0^+, \nu_0^-)}{Y} \Delta \nu_{bb}$$

Y: Yokoya Factor

Horizontal Beam-Beam Parameter and Emittance

$$\begin{split} \Xi_x^+ + \Xi_x^- &= R_x^+ \frac{r_e}{\gamma_+} \frac{\beta_x^+}{2\pi\Sigma_x(\Sigma_x + \Sigma_y)} N_- + R_x^- \frac{r_e}{\gamma_-} \frac{\beta_x^-}{2\pi\Sigma_x(\Sigma_x + \Sigma_y)} N_+ \\ \xi_x &\approx R_x^* \frac{r_e \beta_x^*}{2\pi\Sigma_x^2} (\frac{N_-}{\gamma^+} + \frac{N_+}{\gamma^-}) \\ &= R_x^* \frac{r_e}{4\pi\varepsilon_x} (\frac{N_-}{\gamma^+} + \frac{N_+}{\gamma^-}) \\ &= 2\varepsilon_x \beta_x^* \end{split}$$

Intensity Parameter, N/ γ : G

$$\mathcal{E}(N/\gamma) = \frac{N_-}{\gamma^+} + \frac{N_+}{\gamma^-}$$

$$\Delta v_{bb_x} \implies \Xi_x^+ + \Xi_x^- \implies \mathcal{E}_x$$

Coherent Tune Shift and Beam-Beam Parameter

Nonlinear Effect in Vertical Spectrum

• Changing excitation amplitude:

Result:

- The 0-mode appears clearly in the positron bunch and the π -mode is clear in the electron bunch.
- The peak of the π -mode spectrum shifts to a lower tune due to the nonlinear beam-beam force.

KEKB Review Dec. 4, 2007

BR~74%

1.5/0.3mA

Nonlinear Effect in Horizontal Spectrum

• Coherent beam-beam tune shift should be determined by an edge, not a peak in the spectrum.

Beam Conditions for Coherent Tune-Shift Measurement

Ring	LER	HER	LER	HER	
Crab	0.94MV	1.43MV	OFF		
Emittance: ε_x	24	24	18	24	nm
Beta*: βx/βy	80/0.59	80/0.59	59/0.65	56/0.59	cm
Tune: vx	45.507	44.510	45.527	44.512	
Tune: vy	43.595	41.595	43.567	41.584	
VS	-0.0249	-0.0216	-0.0249	-0.0216	
Bunch spacing	192		320		ns

• Crab ON: Collision with zero-offset and almost the same tune, 20070401

• Crab OFF: 20061212

Vertical tune Shift and Beam-Beam Parameter

Result:

- The ξ_y obtained from the luminosity agrees with the Ave[ξ_y] obtained from the coherent tune shift.
- Both parameters saturate around 0.04.
- We can estimate the beam-beam limit at a current product of about 0.14 mA².

Horizontal Tune Shift and Emittance

<Beam-Beam Parameter>

Result:

- The estimated ξ_x does not saturate over 0.1.
- It is higher than calculated values using a constant emittance.
- Need more consideration.

Intensity Dependent Spectrum

While increasing electron bunch (opposite beam) intensity,

we observed a change of the spectrum of a positron bunch (own beam) with a constant excitation level:

Result:

- Spectrum is getting broader as increasing intensity of opposite beam.
- The beam-beam mode splits into two peaks.
- The 0-mode spectrum damps and the π -mode slightly grows.
- After that, we observed a short lifetime of the own beam.

Summary 2

- Because of the nonlinear beam-beam force, the coherent tune shift is obtained from the maximum tune shift (edge) not from a peak in the spectrum.
 - Much difference between the peak and the edge.
 - Not easy to measure the edge automatically.
- The estimated parameter, $\Xi_{y}^{+} + \Xi_{y}^{-}$, from the coherent tune shift is consistent with the parameter, ξ_{y} , from the luminosity monitor.
- The ξ_y is saturated with about ~0.04, at a low bunch current of 0.14 mA², the beam-beam limit. The current is about 0.5 mA² in usual operations.
- The ξ_x is not saturated over 0.1.
- The ξ_x is higher than an expectation, the reason is not understood.
- When an *opposite* bunch had a higher intensity than an optimum value, the tune spectrum of an *own* bunch was widened and the 0-mode damped and the beam-beam mode split with distortion. The phenomena resemble those at high level excitation.

Filot LER; .5058/.5816 HER; 0.5109/.5896 LER V#0; 0.5715: single beam

3.06 spacing 0.9/0.43mA

Result:

- The sideband appears in the LER Vertical spectrum, except that of a leading bunch.
- The spectra are related to the electron cloud and the beam-beam.
- A tune shift is larger than that in a single beam.

Complex Phenomena due to Electron Cloud and Beam-Beam:

- Vertical tune decreases with increasing excitation level.
- The nonlinearity was not observed under a single beam, even in a cloud.
- The nonlinear effect is strong in the backward bunch in a train.
- Tune shift along a train is larger that that in a single beam.

Topics III: Bunch-By-Bunch Orbit Measurement

<Performance>

Pick-up	Button
Detector Bandwidth	508 +/- 30 MHz
Resolution	20 μm @turn-by-turn
of Position	3 ~ 5 μm @average
and Phase	0.3 deg. @turn-by-turn
Isolation of Gate	40 dB @ 3-bucket spacing

<Optics Parameter at Pickup>

• Also use Gated Beam-Position Monitor.

	LER	HER	
	QV1P.2	QX6E.2	
β_x (m)	22.38	43.05	
β_y (m)	22.50	4.34	
φ_x from IP	22.68	23.33	
φ_y from IP	21.67	21.51	
η_x (m)	<0.001	<0.001	

Position along Train

- measured every 49-bucket -

Crabbing Collision, 3.06 spacing, N=1585, LER: 1530 mA, HER: 800 mA

LER **HER** X_c ٠ ٠ X_c HER_071031_3.06_800mA LER_071031_3.06_1530mA -0.4 2.7 (mm) so-0.6 -0.6 -0.7 -0.7 X_Position_c (mm) 2.65 Х 2.6 2.55 -0.8 2.5 2000 3000 1000 4000 5000 0 2000 3000 1000 4000 5000 0 Bucket Bucket • Y HER_071031_3.06_800mA LER_071031_3.06_1530mA 1.35 0.7 (mm) sod ⁻ ^{0.65} 0.55 1.3 Y_Pos (mm) Y 1.25 1.2 0.5 1.15 2000 3000 1000 2000 3000 0 1000 4000 5000 4000 5000 0 Bucket Bucket

Phase along Train with 3.06 & 3.27 spacing

26

Position along Train with 3.5 spacing, w/o crab

LER/1640mA

HER/1260mA

Details of Position along Train 2

- Vertical position changes around 4-bucket spacing.
- Horizontal position and the beam phase does not change so much.

Summary 3

- Observed that horizontal position shifted inward along train.
- Maximum shift in LER is 19 $\mu m@IP$, in HER 40 $\mu m@IP$
- Note the estimation does not consider the dynamic beta.
- Vertical displacement is rather small, except the leading part of train.
- Phase shift is due to the transient beam loading.
- Fortunately, the shifts of both beams are almost the same, 3 deg. @1500/800 mA.
- When the bunch spacing changed, we observed a large displacement of the vertical position.
- $5 \sim 6 \,\mu m@IP$, unrealistic value!
- I suspect the button signal may be affected by wake fields.

