Commissioning Progress since October 2007

13th KEKB Accelerator Review Dec. 03, 2007 Haruyo Koiso

Progress

- Higher beam currents with Crab ON.
 - $1300 \rightarrow 1620 \text{ mA}$ (LER), $700 \rightarrow 850 \text{ mA}$ (HER)
- Shorter bunch spacing, more bunches.
 - 3.5 buckets (1389 bunches) → 3.27 (1485) → 3.06 (1585)
- Adjust βx*
 - $80 \rightarrow 68 \rightarrow 90 \rightarrow 100 \text{ cm}$ (both rings)
- Simplex knob scan

Operation History

- Oct. 2 Beam operation started with Crab OFF.
- Oct. 5 Collision started with Crab ON (0.875(LER) / 1.45(HER) MV). 3.5 rf bucket spacing, 1389 bunches.
 - Oct. 13 Crab voltage scan with 100 bunches.
 - Oct. 22 Knob Optimization by Downhill Simplex Method was put in practical use.
- Oct. 24 3.27 rf bucket spacing, 1486 bunches.
- Oct. 26 3.06 rf bucket spacing, 1585 bunches.
 - Nov. 8 Green Ratio was introduced.
- Nov. 12 $\beta x^* 80 \rightarrow 68 \text{ cm}$
 - Nov. 19 Crab voltage scan with high currents.
- Nov. 21 βx* 90 cm
- Nov. 26 Peak luminosity 14.689/nb/s
- Nov. 29 βx* 100 cm (0.783 (LER) / 1.297 (HER) MV).

Best Day with Crab Cavities (Nov. 26)

Daily Luminosity

We must obtain 710/pb/day to achieve 800/fb till March 31, 2008.

Specific Luminosity

Specific Luminosity

Luminosity (estimated)

The specific luminosity is assumed to be on the line Green Ratio=1.

Machine Parameters (Nov. 28 2007)

	LER	HER			
Circumference	30	m			
RF Frequency	508	MHz			
Horizontal Emittance	18	24	nm		
Beam current	1582	839	mA		
Number of bunches	15				
Bunch current	0.998	0.530	mA		
Bunch spacing	2	m			
Bunch trains	ា				
Total RF volatage Vc	8.0	13.0	MV		
Synchrotron tune ${m v}_s$	-0.0246	-0.0204			
Betatron tune v_x / v_y	45.506/43.570	44.511/41.590			
beta's at IP $oldsymbol{eta}_x^*$ / $oldsymbol{eta}_y^*$	90/0.59	90/0.59	cm		
momentum compaction α	3.31 x 10 ⁻⁴	3.38 x 10 ⁻⁴			
Estimated vertical beam size at IP σ_y^*	1.1	1.1	μ m		
beam-beam parameters ξ_x / ξ_y	0.089/0.093	0.098,0.088			
Beam lifetime	150@1600	1 32@839	min.@mA		
Luminosity (Belle Csl)	14	10 ³³ /cm ² /sec			
Luminosity records per day / 7days/ 30days	1.232/7.8	/fb			

This is almost equal to the value achieved at collision with longer bunch spacing.

Effects of high current and short spacing are not so big?

IR Optics

LER

HER

 $\beta_{x,y}^{*}$ can be adjusted by using only 7 (LER)/6 (HER) quadrupoles on each side of IP.

Chromaticity Measurement (Mar. 05)

HER

Measurement

7

4

2

LER

 $\delta \xi_{\rm H} = -1.7, \ \delta \xi_{\rm V} = +0.9$

 $\delta \xi_{\rm H} = +0.9, \ \delta \xi_{\rm V} = +2.9$

Downhill Simplex Method

Method of Minimization

- {1, 2, 3} 1(best)<2(next-to-the worst)<3(worst)
- Evaluate 3_R
- If $3_{R} < 1$,
 - If $3_E < 3_R$, {1, 2, 3_E } : Expand , if not, {1, 2, 3_R } : Reflect
- If $1 < 3_R < 2$, $\{1, 2, 3_R\}$: Reflect
- If 2<3ⁿ<3, Reflect 2ⁿ proposed by A. Hutton
 - If $3_{C_+} < 3_R$ {1, 2, 3_{C_+} } : Contract+, if not, {1, 2, 3_R } : Reflect
- If 3<3_R, Reflect 2
 - If $3_{C_-} < 3$, {1, 2, 3_{C_-} } : Contract-, if not, {1, 2_s , 3_s } : Shrink/Reflect2

Luminosity Optimization (Nov. 30) Start

_	Ini	itial S	Simplex	(Lis	t View)		de Deublie				~~			Green	of	Mass)
		#	R1L R2	L	R3L R	4L	EYL EPT	L R	IN R2	H R31	H R4H	RYH	BPY	Ratio	Time79	9.43%
NEXT SET :		0.51	4.55 4.55	0.95	-0.74 -0.74	0.43	-0.31 -0.31	3.97 3.97	-5.07 -5.07	-0.88 -0.88	-1.92 -1.92	0.22	-0.45 -0.45		/	
STAR	T: 1	0.63	4.55	1.19	-0.74	0.43	-0.07 -0.31	3.97 3.73 3.97	-4.83 -5.07	-0.88 -1.00 -0.88	-1.68 0.32	0.22	0.55	79.30 79.43 83.74		
	2	0.51	4.55	0.95	-0.74 1.50	0.43	-0.31 -0.31	3.97	-5.07	-0.88 -0.88	-1.92 -1.92	0.22	-0.45	79.56 78.56		
	4 5 6	0.51	4.55 4.55 4.55	0.95 3.19 0.95	-0.74 -0.74 -0.74	0.43	-0.31 -0.31 -0.31	3.97 3.97 3.97	-5.07 -5.07 -2.83	-2.00 -0.88 -0.88	-1.92 -1.92 -1.92	0.22	0.67	77.83 75.49 75.35		Best
	7	0.51	4.55 5.41	0.95	-0.74	0.43	-0.31	3.97 3.11	-5.07 -4.21	-0.88 -1.31	-1.92 -1.06	1.34	0.67	75.26 74.38		83.74
	9 10 11	0.51 0.51 0.51	6.79 4.55 4.55	0.95	-0.74 -0.74 -0.74	0.43 0.43 0.43	-0.31 -0.31 1.93	3.97 1.73 3.97	-5.07 -5.07 -5.07	-0.88 -0.88 -0.88	-1.92 -1.92 -1.92	0.22 0.22 0.22	0.67 0.67 0.67	72.85 72.78 71.01		
	12 13	0.51 1.63	4.55 4.55	0.95	-0.74 -0.74	-0.69 0.43	-0.31 -0.31	3.97 3.97	-5.07 -5.07	-0.88 -0.88	-1.92 -1.92	0.22 0.22	0.67	70.75 63.94		

Luminosity Optimization (Dec. 2)

σ_v^* Minimization

σ_v^* Minimization by Downhill Simplex Method

Crab Voltage Scan

The ratio of crab voltages was adjusted to give the same kick in both rings. The scan was done, keeping the voltage ratio.

Plans

- Collision at long bunch spacing (49 buckets)
- Higher currents
- Adjustment of β_x^* and horizontal emittance
- Improvement of simplex scan
 - Modified algorithm proposed by A. Hutton
 - Include other knobs (horizontal dispersion, etc.)
- Larger dynamic aperture to cure lifetime degradation
 - Better choice of sextupoles
 - Better correction of both on- and off-momentum optics
- Reduction of vertical emittance
 - Better optics correction
- More knobs, better method of knob optimization