RF-Gun for SuperKEKB

SuperKEKB review @ 05 Mar, 2013 Mitsuhiro Yoshida

SuperKEKB upgrade for low emittance electron beam

		KEKB obtained (e+ / e-)	SuperKEKB required (e+ / e-)
High charge low emittance is required for SuperKEKB.	Beam energy	3.5 GeV / 8.0 GeV	4.0 GeV / 7.0 GeV
	Bunch charge	$e- \rightarrow e+ / e-$ 10 \rightarrow 1.0 nC / 1.0 nC	$e- \rightarrow e+$ / $e-$ 10 \rightarrow 4.0 nC / 5.0 nC
	Beam emittance (γε)[1σ]	2100 μm / 300 μm	<mark>6</mark> μm / <mark>20</mark> μm

5 nC 10 mm-mrad electron beam generated by RF gun.

+ 10mm-mrad emittance preservation is required.

RF-Gun development strategy for SuperKEKB

- Cavity : Strong electric field focusing structure
 - Disk And Washer (DAW) => 3-2, A-1(test)
 - Quasi Traveling Wave Side Couple => A-1
 - => Reduce beam divergence and projected emittance dilution
- Cathode : Long term stable cathode
 - − Middle QE (QE=10⁻⁴~10⁻³ @266nm)
 - Solid material (no thin film) => Metal composite cathode
 - => Started from LaB₆ (short life time)
 - => Ir₅Ce has very long life time and QE>10⁻⁴ @266nm
- Laser : Stable laser with temporal manipulation
 - LD pumped laser medium => Nd / Yb doped
 - Temporal manipulation => Yb doped
 - => Minimum energy spread

• RF-Gun

- Design of RF-Gun cavity
 - Disk-And-Washer (DAW)
 - Quasi travelling wave side couple
- Cathode
- Laser
- Test stand and schedule

RF-Gun for 5 nC

- Space charge is dominant.
 Longer pulse length : 20 30 ps
 - Longer puise length . 20 50 ps
- Stable operation is required.
 - Lower electric field : < 100MV/m</p>
- Focusing field must be required.
 - Solenoid focus causes the emittance growth.
 - Electric field focus preserve the emittance.

Epxial coupled cavity : BNL

Annular coupled cavity : Disk and washer / Side couple

DAW (Disk and Washer) type RF-Gun

Fabrication of DAW RF-Gun

Design of a quasi traveling wave side couple RF gun

Normal side couple structure

Quasi traveling wave sidecouple structure

2D Designing of the quasi traveling wave side couple RF gun

RF-Gun comparison

• RF-Gun

- Design of RF-Gun cavity
- Cathode
 - Advantage of LaB6
 - Measurement equipment of quantum efficiency
 - Laser cleaning & Heat treatment
- Laser
- Test stand and schedule

Cathode : Advantage of LaB₆ or Ir₅Ce

The thermocathodes can also be used as photoemitters [13]. LaB₆ should be noted as a promising photoemitter [14], which has a quantum yield of about 10^{-3} at a laser wavelength of 266 nm and $4 \cdot 10^{-4}$ at 532 nm for face (100).

Physica Scripta. Vol. T71, 39-45, 1997. Cathodes for Electron Guns G. I. Kuznetsov

Lifetime measurement (LaB₆ / Ir₅Ce)

• RF-Gun

- Design of RF-Gun cavity
- Cathode
- Laser
 - Nd:YVO4 / Nd:YAG Solid state laser
 - Yb fiber laser
- Test stand and schedule

Laser medium and its effciency

Absorption

Spectal width

Quantum efficiency

1.5 nm

0.76

200 nm

0.55

21 nm

0.91

Energy spread reduction using temporal manipulation

Nd based laser system

• Nd:YVO₄ oscillator + Nd:YAG multi-pass amplifier

30 ps (10 mm)

Position [mm]

0.4

Yb-fiber & Yb solid state laser development

Oscillator & pre-amplifier are already working.

Yb disk Laser

Regenerative amplifier using Vb disk laser

• RF-Gun

- Design of RF-Gun cavity
- Cathode

– Laser

- Test stand and schedule
 - 3-2 RF-Gun for preliminary test & PF injection
 - A-1 RF-Gun

3-2 RF-Gun

3-2 RF-Gun (2011/10)

3-2 Laser hut

Cathode LaB6 => Ir5Ce (2012/03)

Laser injection with angle (2012/05)

5nC was achieved ! • 4 mJ @ 266nm => 1.5 mJ on cathode

A-1 RF gun - DAW RF-Gun was installed => Quasi-travelling wave side couple RF-Gun will be installed soon. A sector D<u>C g</u>un B sector - Yb based laser system is under test A-1 RF gun J arc 3-2 RF gun C sector 3 sector 4 sector 5 sector 1 sector 2 sector Exist DC gun Pre buncher, (Positron beam primary) Buncher SH buncher MM_A1_C5 SC_A1_C5 1174.07 886.5 160, 35 SX_A1_G4 SY_A1_G4 2 m Acc. 00_A1_88 A1_88 0F_A1_88 0D_A1_88 0F_A1_88 0D_A1_1 0F_A1_1 SP_A1_1 0D_A1_1 SX_A1 81_41_56 82_14_22 GU_A1_G i Fi P SX_A1_1 SY_A1_1 166 360 920, 5 1438.08 543 2072. 449 165 86 12 195 325 237 370 265 170 530

A1 sector

Summary

- RF-Gun cavity
 - **5nC Demonstration was done** using DAW-type RF-gun.
 - Quasi travelling wave side couple structure : Fabrication is almost done.
 - Ageing process was finished for less than only one week.
- Cathode
 - Room temperature $6 \text{mm}\phi \text{ Ir}_5 \text{Ce}$ cathode has enough QE.
 - Laser cleaning & laser injection angle is effective.
- Laser & control
 - Nd based laser system : 3-2 RF-Gun
 - Yb based laser system : A-1 RF-Gun
 - Yb-fiber : Precise RF synchronization
 - Yb-disk amplifier: High power output
 - Temporal manipulation To be developed.
 - Stability / Control:

under test