Beam Dynamics Issues in SuperKEKB

Demin Zhou

Thanks to

KEK: T. Agoh, H. Fukuma, N. Iida, H. Ikeda, M. Kikuchi, H.
Koiso, A. Morita, K. Ohmi, Y. Ohnishi, K. Oide, K. Shibata, Y.
Suetsugu, H. Sugimoto, K. Yokoya, ...
SLAC: Y. Cai, G. Stupakov, L. Wang
BINP: E. Levichev, P. Piminov

The 18th KEKB Accelerator Review Committee, Mar. 04, 2013

Outline

Introduction

- ► CSR
 - Instability analysis; Impedance calculation; MWI
- simulations

► Beam-beam

• Tune scan; Crosstalk with lattice nonlinearities; Chromatic aberration

► Space charge

• Linear tune shift; Crosstalk with beam-beam and lattice nonlinearities

► Fast ion

- Simulations
- Summary and Future plan

1. Introduction: Scaling SuperKEKB/KEKB

	LER			HER		
	SKEKB	KEKB *	Factor	SKEKB	KEKB *	Factor
E(GeV)	4.0	3.5	1.14	7.007	8	0.876
I _b (mA)	I.44	1.03	1.4	I.04	0.75	1.4
ε _x (nm)	3.2	18	0.18	4.6	24	0.19
ε _y (pm)	8.64	180	0.048	11.5	240	0.048
β _x *(m)	0.032	1.2	0.027	0.025	1.2	0.021
β _y *(mm)	0.27	5.9	0.046	0.3	5.9	0.051
a _p (10 ⁻⁴)	3.25	3.31	0.98	4.55	3.43	1.33
σ _δ (ΙΟ-4)	8.08	7.73	1.11	6.37	6.3	0.96

*Machine parameters on Jun.17, 2009

- 1. Introduction: Beam dynamics issues
- SuperKEKB: Low emit., small beam size, high current
- ► Effects comparable to KEKB
 - Long. single-bunch instability
 - Multi-bunch instability
 - CSR
 - HOM heating
 -
- Effects (possibly) significant in SuperKEKB
 - Intra-beam scattering, Touschek lifetime, DA
 - Beam-beam, beam-beam + Lat. nonlin.
 - Space charge, Space charge + beam-beam + Lat. nonlin.
 - Fast ion
 - Transverse impedance: TMCI, beam tilt

•

► Found to be important in DR in 2010

- Optics: CSR-optimized
- Vacuum chamber and RF system

► Collaboration

• KEK: T. Agoh, H. Ikeda, M. Kikuchi, K. Ohmi, K. Oide, K. Shibata,

K. Yokoya, D. Zhou

- SLAC: Y. Cai, G. Stupakov, L. Wang
- CERN: F. Zimmermann

Intensive CSR impedance calculations

- Benchmark: 5 codes (Agoh, Oide, Zhou, Stupakov, Wang)
- Single-bend and multi-bend
- Rectangular and arbitrary cross-section of chamber
- Intensive simulations of MWI
 - Macro-particle tracking: SAD
 - Vlasov solver: SAD, Cai-Warnock's code

► Findings: General

• CSR: High-frequency impedance in the mm wave regime; Overtaking self-fields

• Numerical noise in impedance calculation: Low/high in rectangular/arbitrary chamber cross-section

 Instability analysis(Stupakov-Heifets theory): a simple, but robust method for estimate of CSR effect

► Findings: Impedance

- CSR impedance: Forest of "narrow-band" spikes
- Multi-bend interference in CSR: Interesting but likely not

important for both single- and multi-bunch instability

Findings: Multi-bunch instability

- Long-range CSR wake extend to distance of ~0.1 m
- Not considered in CSR impedance calculation: Resistive

wall and chamber discontinuities

• No multi-bunch CSR instability(?)

► Findings: PIC tracking

- CSR instability is sensitive to number of kicks per turn
- Mesh size contribute to numerical noise
- Tracking always suffers from numerical noise

► Findings: Vlasov solver

- CSR instability is sensitive to number of kicks per turn
- Sizes of mesh and domain contribute to numerical noise
- Numerical noise significantly suppressed
- Typical: 1024 kicks per synch. period
- Almost no CSR instability below design bunch current
- Threshold(CSR) close to Stupakov-Heifets-Cai theory

2. CSR: Summary

Instability threshold estimated by S-H-C theory

• All rings are safe from CSR instability

	2	DR		LER	HER	
E(GeV)	1.1			4.0	7.007	$ _{\mathcal{N}}$
NP(10 ¹⁰)	5			9.04	6.53	
b(mm)	24			90	52	
R(m)	2.7/3			74.7	106	
a _p (10 ⁻⁴)	4			3.25	4.55	
σδ(ΙΟ-4)	5.5			8.08	6.37	
σ _z (mm)	6.6	7.8		6	5	
N _{th} (10 ¹⁰)	4.4	5.2	7.6	8.8	19.3	

$$V_{th} = \frac{CI_A}{ce} \frac{\alpha_p \gamma \sigma_\delta^2}{\sigma_z} \frac{\sigma_z^{4/3}}{R^{1/3}} \xi_{th}$$
$$I_A = 4\pi\epsilon_0 \frac{m_e c^3}{e}$$
$$\xi_{th} = 0.5 + 0.34\chi$$

$$\chi = \sigma_z \sqrt{\frac{R}{b^3}}$$

- 3. Beam-beam: Tune scan(BBWS)
- Synchro-betatron resonance: $2v_x-nv_s = Int$. due to x^2z^2 term in beam-beam force
- ► Present choice: (v_x,v_y)=(*.53,*.57)
- > Tune closer to half integer is necessary?
- Lum. gain from crab waist: ~15%@Design

- 3. Beam-beam: Lattice nonlinearities
- ► Lattice nonlinearities
 - Low emit. => Strong lattice nonlinearities
 - Crosstalk with beam-beam and space charge
 - BB simulation(w/o crab cavity) => Not important in KEKB

3. Beam-beam: Lattice nonlinearities

- ► BB(weak-strong) + LN
 - Simulation: BBWS(NP=10000), SAD(NP=1000)
 - Significant lum. loss independent on hor. tune
 - LN enhance synchro-betratron resonances
 - Depend on optics

3. Beam-beam: Lattice nonlinearities

► FMA w/o BB: LER

- Footprints in tune space: on-momentum
- BB tune shift: ∆v_y≈0.09
- Strong high-order resonances
- Improvement in DA leads to better lum. performance

3. Beam-beam: Lattice nonlinearities

► FMA w/o BB: HER

- Footprints in tune space: on-momentum
- BB tune shift: Δv_y≈0.08
- Improvement in DA leads to better lum. performance
- Nonlin. motion by crossing resonances?

3. Beam-beam: Chromatic coupling **KEKB**

19

Important in both crab on and off

Skew sext., Masuzawa et al.

3. Beam-beam: Chromatic coupling

► SuperKEKB LER

- Lum. more sensitive to chrom. coupling
- Chrom. coupling routinely minimized in optics design

3. Beam-beam: Chromatic coupling

► SuperKEKB LER

- Tolerance for parameters with 10% lum. loss
- Better tolerance with crab waist
- Similar results for HER

Parameter	w/ crab waist	w/o crab waist
∂rı*/∂δ (rad)	.	0.8
∂r₂*/∂δ (m)	0.04	0.03
∂r₃*/∂δ (m⁻¹)	4500	3000
$\partial r_4^* / \partial \delta$ (rad)	160	110

3. Beam-beam: Other parameters

- ► Old results for SuperKEKB(KEKB MAC11, K. Ohmi)
 - Tolerance for parameters with 20% lum. loss

Parameter	w/ crab waist	w/o crab	waist
r1 [*] (mrad)	±5.3	±3.5	
r ₂ * (mm)	±0.18	±0.13	
r ₃ * (m ⁻¹)	±44	±15	
r4 [*] (rad)	±1.4	±0.4	
∂r1 [*] /∂δ (rad)	±2.4	±2.1	
∂r₂*/∂δ (m)	±0.086	±0.074	
∂r₃*/∂ð (m⁻¹)	$\pm 1.0 \times 10^{4}$	±8400	
∂r₄ [*] /∂δ (rad)	±400	±290	
η _y * (μm)	±62	±31	
η _γ ΄*	±0.73	±0.23	
Δx (μm) collision offset Δs (μm) waist error	10 100 rot 0.02 (100)	10 100	The degradation is roughly quadratic
δx (μm) turn by turn noise δy (nm)	0.5 4	0.5 4	σx=6-10μm σy=50 nm

4. Space charge

► SC effects

- Linear/Nonlinear tune shift
- Emittance growth
- Crosstalk with B-B/Lat. nonlin.
- Impact on injection
- Effect studied in detail for ILC damping ring
 - Codes: SAD and MaryLie/Impact
 - Emittance degradation: Cross lattice resonances; Amplify

effects of lattice errors; Tune choices; ...

- ► Also studied for SuperB LER
- Differences from ILC DR
 - **BB**
 - No symmetry in lattice => Strong lat. nonlin.

4. Space charge: Linear tune shift

SuperKEKB LER

- Tune shift: Same order for SC and BB
- But have opposite signs

	Superl	(EKB ^{I)}	KEKB ⁴⁾		
	LER ²⁾	HER ³⁾	LER	HER	
ε _x (nm)	3.2	4.6	18	24	
ε _y (pm)	8.64	11.5	180	240	
ξ×	0.0028	0.0012	0.127	0.102	
ξγ	0.0881	0.0807	0.129	0.09	
Δv_x	-0.0027	-0.0004	-0.0005	-3.00E-05	
Δv_y	-0.0943	-0.0121	-0.0072	-0.0004	

¹⁾Main paraperters from Y. Ohnishi et al., Prog. Theor. Exp. Phys. 2012; ³⁾sher_5753; ²⁾sler_1682;

⁴⁾Lattice used on Jun.17, 2009.

4. Space charge: Tune shift

► SuperB

- Linear SC tune shift Δvy≈-0.08
- Linear SC tune shift ∆v_y≈0.12

Courtesy of E. Levichev

25

5. Fast ion: HER

► KEKB achieved: P_{tot} ≈ 2-3x10⁻⁷Pa(Arc section)

SuperKEKB expected:

 P_{tot} ≈9(4.5)x10⁻⁷Pa, P(CO)≈2(1)x10⁻⁷Pa if photo-desorption coefficient η=1(0.5)x10⁻⁶

Critical mass: CO and CO₂ are most important

5. Fast ion: HER: Simulation results (L. Wang)

► Vertical growth time: $\tau_y = 44\mu s$ for $P_{tot}=5x10^{-7}Pa$ ► If total pressure $P_{tot}=1.3x10^{-7}Pa(1 \text{ nTorr})$, $\tau_y = 104\mu s$ ► If H₂ is dominant(e.g. 70%), as expected in long term operation, $\tau_y = 76\mu s$ ($P_{tot}=5x10^{-7}Pa$)

- 5. Fast ion: HER: Simulation results (K. Ohmi)
- ➤ Amp. growth sensitive to partial gas pressure of CO
 ➤ Fast feedback necessary (G=0.05 → 20 turns)
- ► Simulations: Only pressure of CO considered

K. Ohmi

- 5. Fast ion: HER: Future study
- ► BBWS: Lum. loss < $10\% \rightarrow DY/\sigma_{y0} < 5\%$
- **>** Future study:
 - Optimum fill pattern
 - Expected pressure
 - Bunch feedback

6. Summary

CSR unlikely to be important in SuperKEKB

- Improvements in CSR calculation and MWI simulation
- Study of CSR in linac is ongoing
- ► Beam-beam
 - Strong synchro-betatron resonances => Tune choice
 - Crosstalk with LN likely to be important => Need more

study in detail; Benchmark work is preferred

• Study of crosstalk with SC is ongoing

• Tight control of chromatic coupling is necessary => Future work: To simulate all knob scans in the control room based on a virtual machine

► Space charge

- Recognized most recently
- Study in detail is underway

6. Summary

► Fast ion

Ongoing study: Fill pattern; Expected pressure; Feedback

- Not addressed issues
 - Single particle dynamics => H. Sugimoto's talk

• Strong-strong beam-beam simulation => Time consuming; Challenges in parallelization of code

• Ecloud => No new simulation results; Experiments

• Impedance => Impedance database is under preparation (Longitudinal for MWI; Transverse for TMCI and beam tilt)

Unrecognized issues???

• Recommendations from the review committee are mostly appreciated!

• Ideas from outside are welcome! SuperKEKB will be an excellent platform for accelerator physicists!

7. Future plan

➤ An international effort to study the beam dynamics issues in SuperKEKB

- BINP team: E. Levichev, P. Piminov, Shatilov, Koop, et al.
- SLAC team: Y. Cai, G. Stupakov, L. Wang, and others?
- INFN team: SuperB experiences?
- SuperKEKB team:
- ► Proposals by E. Levichev
 - Polarization: Ivan Koop and Dmitry Schwarts
 - BB+LN+SC: Pavel Piminov and Dmitry Shatilov
 - DA, Crab waist, Lattice: Anton Bogomyagkov, Sergey

Siniatkin, Pavel Piminov

Thanks for your attention!