RF-Gun and Hardware for emittance preservation

SuperKEKB review @ 04 Mar, 2014 Mitsuhiro Yoshida

SuperKEKB upgrade for low emittance electron beam

		KEKB obtained (e+ / e-)	SuperKEKB required (e+ / e-)
High charge low emittance is required for SuperKEKB.	Beam energy	3.5 GeV / 8.0 GeV	4.0 GeV / 7.0 GeV
	Bunch charge	$e- \rightarrow e+$ / $e-$ 10 \rightarrow 1.0 nC / 1.0 nC	$e- \rightarrow e+$ / $e-$ 10 \rightarrow 4.0 nC / 5.0 nC
	Beam emittance (γε)[1σ]	2100 μm / 300 μm	<mark>6</mark> μm / <mark>20</mark> μm

5 nC 10 mm-mrad electron beam generated by RF gun.

+ 10mm-mrad emittance preservation is required.

RF-Gun development strategy for SuperKEKB

- Cavity : Strong electric field focusing structure
 - Disk And Washer (DAW) => 3-2, A-1(test)
 - Quasi Traveling Wave Side Couple => A-1
 - => Reduce beam divergence and projected emittance dilution
- Cathode : Long term stable cathode
 - − Middle QE (QE=10⁻⁴~10⁻³@266nm)
 - Solid material (no thin film) => Metal composite cathode
 - => Started from LaB₆ (short life time)
 - => Ir₅Ce has very long life time and QE>10⁻⁴ @266nm
- Laser : Stable laser with temporal manipulation
 - LD pumped laser medium => Nd / Yb doped
 - Temporal manipulation => Yb doped
 - => Minimum energy spread

• RF-Gun

- Design of RF-Gun cavity
 - Quasi travelling wave side couple
- Cathode
- Laser
- Test stand and schedule

RF-Gun for 5 nC

- Space charge is dominant.
 Longer pulse length : 20 30 ps
 - Longer puise length . 20 50 ps
- Stable operation is required.
 - Lower electric field : < 100MV/m</p>
- Focusing field must be required.
 - Solenoid focus causes the emittance growth.
 - Electric field focus preserve the emittance.

Epxial coupled cavity : BNL

Annular coupled cavity : Disk and washer / Side couple

Closed gap makes focus field

Side coupled cavity is one candidate (or DAW / ACS / CDS ...)

This structure has focusing field. Long drift space is problem.

Design of a quasi traveling wave side couple RF gun

Normal side couple structure

Quasi traveling wave sidecouple structure

Quasi traveling wave side couple RF gun

This RF gun has total of seven acceleration cavities. These are divided into two standing wave structure of 3 and 4 side coupled cavities respectively.

Emittance: 5.5 mm-mrad @ 5 nC This RF gun can generate 10 nC beam

RF-Gun comparison

Cavity design

cathode

No reflection to klystron

Mechanical design and manufacturing

• RF-Gun

- Design of RF-Gun cavity
- Cathode
 - Advantage of LaB6
 - Measurement equipment of quantum efficiency
 - Laser cleaning & Heat treatment
- Laser
- Test stand and schedule

Cathode : Advantage of LaB₆ or Ir₅Ce

The thermocathodes can also be used as photoemitters [13]. LaB₆ should be noted as a promising photoemitter [14], which has a quantum yield of about 10^{-3} at a laser wavelength of 266 nm and $4 \cdot 10^{-4}$ at 532 nm for face (100).

Physica Scripta. Vol. T71, 39-45, 1997. Cathodes for Electron Guns G. I. Kuznetsov

Lifetime measurement (LaB₆ / Ir_5Ce)

Enhancement of QE

Future prospects

【 Current KEK A1 laser system 】

•W=10mJ/pulse @1030 nm, 20ps \rightarrow 3nC/bunch

• Total loss : 70 % • transmission loss : ~50%

• loss from the miss alignment at cathode : $\sim 60\%$

 \bigcirc QE=1.54×10⁻⁴ @266nm, room temperature

To generate 5nC beams \rightarrow W = 16mJ/pulse @1030nm,20ps To generate 15nC beams \rightarrow W=48 mJ/pulse @1030nm,20ps (for positron generation)

QE enhancement scheme leads to relax the laser power.

[Strategy for the new system of the QE enhancement]

(1)Irradiation of shorter-wavelength laser

____CLBQ____+

Yb:YAG 5th harmonics

The backside electron beam heating system

Irradiation of pre-pulse

Further backside LD heating system will be developed.

• RF-Gun

- Design of RF-Gun cavity
- Cathode
- Yb Laser for spatial & temporal manipulation.
- Test stand and schedule

Energy spread reduction using temporal manipulation

Energy spread of 0.1% is required for SuperKEKB synchrotron injection.

Characteristics of Yb doped laser

- Long fluorescent lifetime ~1ms
- Wideband
- High quantum efficiency
- X Quasi-three level
 - => Absorption at room temperature

X Small cross section

Yb Base material	Stimulated emission cross section [10-20cm2]	Fluoresce nce lifetime [ms]	Thermal conductivity [W/mK]	Fluorescence spectral width [nm]	Fourier minium [fs]	Experimental records				
						Pulse width [fs]	Average power [W]	(b) 2.5		
YAG	<u>,</u> ,	0.95	11	9	120	340	0.11	cu		
	2					136	0.003	0- 15		
	2					730	16	≚ ^{1.5}		
						810	60	L ectio		
KYW	3	0.7	3.3	24	50	71	0.12	-1 SS -SS		Ab
				25 47	47	112	0.2	Ů U U		
KGW	3	0.7	3.3			176	1.1	0.5		
glass	0.63	2	-	35	33	36	0.065			
GdCOB	0.35	2.7	2.1	44	27	89	0.04	85	0	-90
				60 19		69	0.08			
BOYS	0.2	2.5	1.8		60	0 19	86	0.3		
YVO4	-	1.2	-	-	-	61	0.054			
	0.55	_	69	-	_	47	0.038			

Yb Fiber Oscillator WDM LD Yb Fiber 30 fs is possible using non-linear Improved items in FY2013: Transmission => Stable modelock (higher efficiency) grating pair

Super-invar breadboard

polarization rotation.

Transmission grating

- => Thermal stability.
- Piezo mirror on large lead block -
 - => Reduce vibration.

Remaining problem:

Yb fiber oscillator:

-

_

- Bunch structure at higher output power.
 - => SESAM is not effective.
 - => Replace some components.
- Synchronization performance is changing. _

Yb:YAG thin disk Laser

Main Amplifier

UV conversion (BBO SHG+FHG) => 2 mJ maximum @ 260 nm

Typical charge distribution

Laser instability is caused by:

- RF Synchronization of oscillator.
 - => FPGA & electric modulator.
- ASE of fiber amplifier.
 - => Multi-stage fiber amplifier.
- Gain instability of regenerative amplifier.
 - => In-vacuum regenerative amplifier.
- Pointing fluctuation (Vibration ?)
 - => Higher output power and cut the edge.

R&D for better performance of Yb disk laser

• 1035nm band is difficult to use for amplifier.

UV conversion efficiency improvement

[1] K.Deki, et al., "CsLiB₆O₁₀ (CLBO)を用いた193nm光源の開発", 光技術情報誌「ライトエッジ」No.18
[2] Yap YK, et al., "High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB(6)O(10).", Opt Lett. 1996 Sep 1;21(17):1348-50.

• RF-Gun

- Design of RF-Gun cavity
- Cathode

– Laser

- Test stand and schedule
 - 3-2 RF-Gun for preliminary test & PF injection
 - A-1 RF-Gun

A-1 RF gun

- Quasi-travelling wave side couple RF-Gun
- Yb based laser system

Installed RF gun

A-1 RF gun results

5.6 nC was achieved. However beam profile is not good.

3 nC beam delivery was achieved.

Emittance measurement Q scan

Using 30 um screen at 25 MeV

Normalized emittance

Measured Calculated Vertical beta emmitance [mm^2] 1.5 0.5 2.5 3.5 45 5.5 QD_A1_23 [T/m] a=1.61674 b:1.9345 g:1.86811 emi: 0.483263 [mm_mrad] Nemi: 24.1262 [mm_mrad] at 25 MeV_Error(RMS):30.2579% Measured Calculated Horizontal 12 10 emmitance [mm^2] 8 6 oeta 0.6 0.8 1 1.2 1.4 1.6 1.8 2.2 2.4 2.6 2.8 QF_A1_22 [T/m]

a=1.16406, b:0.269154, g:8.74973 emi: 0.22232 [mm-mrad], Nemi: 11.099 [mm-mrad] at 25 MeV Error(RMS):16.9276%

X: 24.1 ±7.2 mm-mrad Y: <u>11.1</u> ±1.8 mm-mrad (Large horizontal emittance is due to laser incident angle.)

Emittance measurement

Wire scanner at B sector

Normalized emittance X: 95.0 ±27.4 mm-mrad Y: 42.0 ±31.1 mm-mrad (including the beam position jitter.)

Summary of RF-Gun

- RF-Gun cavity
 - Quasi travelling wave side couple structure is under operation.
- Cathode
 - Room temperature Ir_5Ce cathode has enough QE.
 - Laser cleaning & laser injection angle is effective.
 - R&D for the QE improvement.
- Laser & control
 - Yb based laser system : A-1 RF-Gun
 - **Yb-fiber :** Precise RF synchronization.
 - Yb-disk amplifier: High power output.
 - Temporal manipulation Under experiment.
 - Stability / Control: Improved but not enough.

Hardware development for emittance preservation Hardware for emittance preservation

- Alignment
 - Initial alignment using laser tracker
 (will be presented by Kamitani)
 - Continuous monitor (HLS, Wire) + Active mover
 - Beam based alignment
- Temporal manipulation
 - Laser pulse shaping
 - Bunch compression
 - Additional hardware to compensate longitudinal wakefield
- Beam diagnostics for offset injection
 - RF Deflector

Requirement for alignment

- 0.3 mm is not enough with offset injection.
- 0.1 mm in sector
- 0.3 mm in global

- Initial alignment using laser tracker.
- Continuous monitor (HLS + Wire) => Active mover.
- Beam based alignment
 - Orbit measurement without acceleration and magnet
 - Low charge (only dispersion) & high charge (wake) measurement
 - Higher order wakefield monitor

Hard ware alignment status

Girder alignment

– Done with laser PD, we assume $\sigma < 0.3$ mm

Accelerator structures

- Aligned on the girder reference points
- Mostly and can be $\sigma < 0.1$ mm

Q magnets

- Set on a bridge aligned w.r.t. adjacent girder ends
- Reflector bases are being mounted on old magnets.
- New magnets are equipped with them.
- Alignment can be checked by laser tracker .
- Evaluation should also be done by beam.
- Independent girders for magnets should be developed if needed.

Present situation on short-distance (local) alignment Hard ware alignment on a 10m girder

Systematic error may exists in H by 0.5mm, while V stays 0.2mm from reference bar.

K. Kakihara, 22 Nov. 2012

KEKB Review 5 March 2013

Laser straight over 500m as a reference

Laser system with tilt feedback 500m vacuum pipe Spot size 4σx∼21mm 4σy∼18mm

Can be used as a straight line. The line connecting points at the ARC exit and BT entry is kept with FB.

Laser PD meas. 9/10~9/16 Vertical

Accelerator structure alignment on a girder, measured w.r.t. PD arms

Examples showing the present status: Statistics of three units (C1, C2, C3)

Horizontal

Average = 2 microns Stand. Dev. = 16 microns Easy adjustment by shimming

Vertical

Average = 5 microns Stand. Dev. = 51 microns A little tedious but can be adjusted by screw bolts

Hydro leveling system (HLS) for continuous monitor

Long term measurement of girder height

=> Continuous monitor & <u>Active movers</u> are required !!

Active mover

• Eccentric Cam Movers 5mm stroke, 125nm resolution

Specification	
Stroke	
X - axis Y - axis Z - rotation	± 2.5 mm ± 2.5 mm ± 0.42°
Resolution	
X - axis Y - axis Z - rotation	 ~ 125 nm ~ 125 nm ~ 9.5 x 10⁻²°
Geometry (X Y Z)	320 x 800 x 189 mm
Withstand load	12000 N
Weight	170 kg

500 kg withstand load test

Active mover installation plan for girder

Preliminary test for higher order transverse wakefield monitor

Bunch compression for 5nC electron & primary electron for positron production

X-band RF Deflector for Bunch Sliced Transverse Emittance Monitor

 $V_{deflector} = 15MV, f_{RF} = 11.424GHz, \Delta t = 10 ps, \beta_{deflector} = 10m$ $\rightarrow \Delta x_{screen} / \sigma_x = 18$

Installation to the monitor beam line at 3rd switch yard (end of LINAC)
 => feedback to the initial offset to compensate the transverse wakefield.

X-band RF-Deflector (U.S. / SLAC)

-1 m structure same as the RF-deflector for LCLS

Input Power : 10MW Deflecting Voltage : 15 MV

X-band Klystron (KEK)

- Based on existing
 9GHz, 4 MW klystron
- 250 kV, ηP=0.7
- 10 MW output
- 2 window

1.5 m RF - Deflector

Summary of hardware for emittance preservation

- Alignment
 - Initial alignment using laser tracker
 - Continuous monitor (HLS, Wire) => Active mover
 - Beam based alignment
- Temporal manipulation
 - Laser pulse shaping
 - Bunch compression
 - Additional hardware to compensate longitudinal wakefield
- Beam diagnostics for offset injection
 - RF Deflector
 - One shot emittance monitor

Backup

Yb-fiber & Yb solid state laser development

Oscillator & pre-amplifier are already working.

Regenerative Amplifier

DAW (Disk and Washer) type RF-Gun

Fabrication of DAW RF-Gun

3-2 RF-Gun

3-2 RF-Gun (2011/10)

3-2 Laser hut

Cathode LaB6 => Ir5Ce (2012/03)

Laser injection with angle (2012/05)

Nd based laser system

• Nd:YVO₄ oscillator + Nd:YAG multi-pass amplifier

30 ps (10 mm)

Position [mm]

0.4

5nC was achieved ! • 4 mJ @ 266nm => 1.5 mJ on cathode

計測結果

Beam diagnostic station

