RF-Gun Workshop Committee Feedback

T. Shintake (OIST)

Matthew Poelker (JLab)

Sasha Gilevich (SLAC)

Yosuke Honda (KEK)

The Review Committee "Philosophy"

- Any component integrated into the accelerator system must be Reliable, Maintainable, Reproducible
- Start with a simple, robust system. Improve it and add features step by step afterwards
- Cost is not irrelevant

The Committee Knows...

- SuperKEKB requires state-of-the-art RF guns and drive lasers
- New hardware, must be designed and built, some items without precedent
- Resourceful group, modest size, must now finish the R&D phase, and move to "production" phase
- SuperKEKB Phase 1 operations begin January 2016, 10 months from now.
 Colleagues expect reliable beam soon

This came as a surprise ... a new beamline using the old thermionic gun and now two quasi-travelling wave guns

How to Interpret?

- Management is getting worried
- Too many ideas, at this stage of the project
- The gun/laser group still faces big technical challenges, and the clock is ticking

What are the laser challenges?

- Timing synchronization
- Amplitude noise
- Laser temporal pulse shaping
- Amplified spontaneous emission
- Two bunch generation
- Reliable delivery of light to photocathode
- The Committee can't tell how many rf gun problems are due to drive laser issues

Recommendations

- Develop a "simple" laser system without temporal pulse shaping: a simplified master oscillator, and more rugged Nd:host free-space amplifiers
- Yes, it's somewhat contradictory for Committee to say "you have too many ideas" and then suggest new things for you to try!
 - timing and amplitude instability. Determine where to devote your effort for the biggest return
- Purchase commercial components when possible.
 Oscillators and fiber amps, free-space amps?
- Do not modify the thermionic gun

Energy spread reduction using temporal manipulation

Energy spread of 0.1% is required for SuperKEKB synchrotron injection.

- When the charge distribution is uniform in a cylinder, the energy spread of the bunch is lower than the result of Gaussian charge distribution.
- For the laser source, the pulse width should be reshaped to rectangle structure.

Two bunch generation

- By eliminating pulse shaping task from laser system, does it become easier to generate two bunches?
- Replace Yb:disk with rugged Nd:host amplifier material: less thermal lensing, more uniform gain applied to both pulses?

Preparing for Production Running

- Improve the environment for laser systems: temperature, vibration, "wind"
- Consider normal incidence laser illumination of the cathode. Or, effective normal incidence, using grating or prism
- Implement a laser imaging system to minimize pointing instability, learn from LCLS
- Shutter in front of gun + virtual cathode diagnostics to set laser spot size at the photocathode, to avoid accidental tight focus and damage
- Harmonic crystals need to be carefully installed: temperature, vibration. Transporting UV light not trivial

How to avoid damaging fibers?

Careful alignment will be important.

output side, stable operation.

Degradation of RF-Gun cavity

IrCe cathode has low work-function 2.57eV
It might be a source of discharge, suppttering on anode.

DAW has better shape (larger anode bore). How to clean up suppeterd material?

Photocathode and RF-gun

- Committee congratulates the team for discovery of IrCe phptocathode
- Committee congratulates the team for the invention of quasi-traveling wave side coupled RF-gun, which will preserve emittance from the cathode to relativistic energy
- Drive laser issues appear to dominate the group's attention, making it difficult to work on gun and photocathode issues...
- Review Committee will provide a detailed summary report. We intend to evaluate SuperKEKB laser specifications against other existing laser systems