Phase-1における LERの電子雲不安定性(ECE)

末次祐介、福間均、飛山真理、J. Flanagan、池田仁美、 大見和史、D. Zhou、柴田恭、石橋拓弥、照井真司

内容

- 設計段階の予想と対策
- Phase-1で観測されたECE
 - アルミ製ベローズチェンバーによるECE
 - 高電流域でのECE
- Phase-2およびそれ以降への対策

PEHTSを使ったシミュレーション (K. Ohmi et al., Proc. IPAC2014, p.1597)

設計段階の予想と対策

- もし、KEKBと同じ円断面の銅ビームパイプを用いたら・・
 - KEKBでの測定結果から電子密度を推定(φ94 mm銅パイプ、 4 ns 間隔、1 mA/bunch、ビーム方向磁場[ソレノイド]無し)

Sections	<i>L</i> [m]	L[%]	<i>n</i> _e [e⁻/m³]	n _e x L [%]	
Total	3016	100	Ave. 5E12	100	
Drift space (arc)	1629 m	54	8E12	78	Main part
Steering mag.	316 m	10	8E12	15	Julairi part
Bending mag.	519 m	17	1E12	3.1	
Wiggler mag.	154 m	5	4E12	3.6	
Q & SX mag.	254 m	9	4E10	0.063	
RF section	124 m	4	1E11	0.072	
IR section	20 m	0.7	5E11	0.063	

*n*_eを2%にするために何らかの対策が必要。特にドリフト部。 (5E12 → 1E11 [m⁻³])

Materials, methods	Relative effect	Notes	
AI	~20	Coatings are indispensable.	
Cu (Circular pipe)	1		基準
Solenoid [Drift space]	~1/50	~50 G, considering gaps (<1/1000 if uniform)	
Antechamber	~1/5	<1/100 for photoelectrons	
Cu (AI) +TiN coating	~3/5	Relatively high gas desorption	
Groove (β ~20°) [in B]	~1/10	Top and bottom	
Electrode [in B]	~1/100	Most effective against EC	

設計段階の予想と対策 対策とその適用場所(設計) リングの各場所で適切な対処方法を採用する。

Sections	<i>L</i> [m]	L[%]	Countermeasure	Material
Total	3016	100		
Drift space (arc)	1629 m	54	TiN coating + Solenoid	AI (arc)
Steering mag.	316 m	10	TiN coating + Solenoid	Al
Bending mag.	519 m	17	TiN coating + Grooved surface	Al
Wiggler mag.	154 m	5	Clearing Electrode	Cu
Q & SX mag.	254 m	9	TiN coating (+ Solenoid)	AI (arc)
RF section	124 m	4	(TiN coating +) Solenoid	Cu
IR section	20 m	0.7	TiN coating	Cu

設計段階の予想と対策

- 期待される電子密度
 - ▶:対策を施した後で期待されるn_e
 - 青:CLOUDLANDを使ったn_eの計算値(福間氏)。
 - 条件: δ_{max} =1.2, Solenoid field=50 G (n_e =0), Antechamber (photoelectron yield =0.01:丸パイプの1/10)

■ 最終的な平均電子密度n_eは10¹⁰ m⁻³オーダーとなると期待される。

設計段階の予想と対策

■ Phase-1開始時の準備

■ ソレノイド磁場(軸方向磁場)は印加していない。

Sections	L [m]	L[%]	Countermeasure	Material
Total	3016	100		
Drift space (arc)	1629 m	54	TiN coating + Solenoid	AI (arc)
Steering mag.	316 m	10	TiN coating + Selencid	AI
Bending mag.	519 m	17	TiN coating + Grooved surface	AI
Wiggler mag.	154 m	5	Clearing Electrode	Cu
Q & SX mag.	254 m	9	TiN coating (+ Solenoid)	AI (arc)
RF section	124 m	4	-(TiN coating +) Solenoid-	Cu
IR section	20 m	0.7	TiN coating	Cu

- アルミ製ベローズチェンバー(長さ200 mm)にはTiNコーティングを 施していない。
 - リングに占める長さも短く、問題にならないだろう・・・・・これが 甘かった。

Vertical beam size blowup

アルミ製ベローズチェンバーによるECE ECEの発現

- 通常バンチフィルパターン(1576 バンチ, 3.06 RF-bucket間隔)の 運転時、約0.6 Aから下記現象が観測された。
 - 垂直方向ビームサイズ増大(ほぼ同じビーム電流線密度から始まる)
 - ビーム電流に対する圧力の非線形上昇
 - ドリフト部の電子に依るバンチ結合型ビーム不安定性

4/150/2 Vertical U 300 mA

2017/9/8

SuperKEKB 国内 Review @KEK

電子密度の測定

- アーク部に設置されたテストビームパイプに電子モニターを2個取り付け、ビームチャンネル内の電子密度を測定した。
 - 測定した電子電流は、グリッド電圧以上のエネルギーを持つビーム チャンネル内の電子数に相当する。
- アルミ合金製テストビームパイプは、片側にのみTiNコーティングを 施した。
 - ▶ それぞれ電子モニターでTiNコーティング有、無を比較可能。

SuperKEKB 国内 Review @KEK

■ シミュレーション(大見氏)

シミュレーションコード PEHTS を使用
 条件: N_b = 600, ε_x = 2 nm, ε_y = 15 pm, σ_z = 6 mm, v_s = 0.019

spacing	l _{p,th} (mA)	N _{p,th} (10 ¹⁰)	ω _e /2π (GHz)	ω _e σ _z /c	ρ _{eth} (Q=10) (10 ¹¹ m ⁻³)	ρ _{eth} (Q=6) (10 ¹¹ m ⁻³)	ρ _{eth} (Simu) (10 ¹¹ m ⁻³)
2 (4ns)	160	1.6	61	7.7	1.91	2.45	3.4
3 (6ns)	200	2.1	71	8.9	1.65	2.45	3.4
4 (8ns)	260	2.7	80	10.1	1.47	2.45	3.8
6 (12ns)	500	5.2	111	14.0	1.47	2.45	5.0
3.06	500	2.0	37	5.5	2.89	2.90	4.4
3.06	600	2.4	41	6.0	2.63	2.65	4.4 N _b =1
							$\varepsilon_v = 10$

Simple formula
$$\rho_{e,th} = \frac{2\gamma\nu_s\omega_e\sigma_z/c}{\sqrt{3}KQr_0\beta L}$$
 $K = \omega_e\sigma_z/c$
 $Q \models \min(\omega_e\sigma_z/c, 7)$

SuperKEKB 国内 Review @KEK

軸方向磁場の試験的印加

- 試験的に18個のベローズチェンバーにソレノイドあるいは永久磁石 ユニット(Permanent Magnet Unit, PMU)を取り付けた。50~100 G。 それぞれ約30 mの区間。
- ▶ その結果、当該区間の圧力の非線形的上昇は緩和された。
- ▶ 永久磁石とソレノイドではほぼ同じ効果だった。

- リングに約830個設置している、全数のアルミ合金製ベローズチェンバーに、その内表面に軸方向磁場(~100 G)を作るような永久磁石ユニット(Permanent Magnet Unit, PMU)を取り付けた。
- ソレノイドに比べると遥かに安価。効果は同じ。
- 長さ160 mmのコの字型鉄ヨークに永久磁石を8個取り付けたものをベローズチェンバーの上下に取り付けた。

Al bellows chambers along the ring

PMU attached to bellows chamber

Field strength of magnets

対策

SuperKEKB 国内 Review @KEK

SuperKEKB 国内 Review @KEK

結合性不安定性のスペクトルも、周辺磁場に閉じ込められた電子に依るものに変わった(飛山氏)。

4/150/2 Vertical U 300 mA

4/150/2 Vertical U 300 mA

の約1/5。⇒アンテチェンバーとTiNコーティングの効果。

SuperKEKB 国内 Review @KEK

高 電 流 域 で の E C E

- アルミ合金製ベローズチェンバーによるECE永久磁石取付後、 圧力の非線形上昇やビームサイズ増大はとりあえず消えた。
- しかし、1/1576/3.06で約0.9 Aでブローアップがまた始まる。
 - 圧力の非線形的上昇も0.9 Aで顕著になった。
 - 不安定性のモードは、電流が増えると、ドリフト部の電子雲に依る ものが観測された(飛山氏)。

SuperKEKB 国内 Review @KEK

高 電 流 域 で の E C E

- アルミ合金製ベローズチェンバーによるECE永久磁石取付後、 圧力の非線形上昇やビームサイズ増大はとりあえず消えた。
- しかし、1/1576/3.06で約0.9 Aでブローアップがまた始まる。
 - 圧力の非線形的上昇も0.9 Aで顕著になった。
 - 不安定性のモードは、電流が増えると、ドリフト部の電子雲に依る ものが観測された(飛山氏)。
 - トレインに沿ったチューンシフトが観測された(大見氏)。

• 条件: N_b = 600, ε_x = 2 nm, ε_y = 15 pm, σ_z = 6 mm, v_s = 0.019

spacing	l _{p,th} (mA)	N _{p,th} (10 ¹⁰)	ω _e /2π (GHz)	ω _e σ _z /c	ρ _{eth} (Q=10) (10 ¹¹ m ⁻³)	ρ _{eth} (Q=6) (10 ¹¹ m ⁻³)	ρ _{eth} (Simu) (10 ¹¹ m ⁻³)
2 (4ns)	200	2.1	71	8.9	1.65	2.45	3.4
3 (6ns)	330	3.5	91	11.5		2.45	4.8
4 (8ns)	>600	>6.3					
6 (12ns)							
3.06	500	2.0	37	5.5	2.89	2.90	4.4
3.06	600	2.4	41	6.0	2.63	2.65	4.4

$$\rho_{e,th} = \frac{2\gamma\nu_s\omega_e\sigma_z/c}{\sqrt{3}KQr_0\beta L} \quad \begin{array}{l} K = \omega_e\sigma_z/c\\ Q \models \min(\omega_e\sigma_z/c,7) \end{array}$$

SuperKEKB 国内 Review @KEK

■ ソレノイドがない場合に期待される電子密度(KEKBの結果より)

- 赤:対策を施した後で期待されるn_e
- 青:CLOUDLANDを使ったn_eの計算値。
 - 条件: ϕ 94 mm銅パイプ、 δ_{max} =1.2, Solenoid field=50G (n_e =0), Antechamber (photoelectron yield =0.01:丸パイプの1/10)、4ns 間隔、1 mA/bunch = 600 mA/600 bunch

2017/9/8

SuperKEKB 国内 Review @KEK

Beam current [mA]

- $(2016/6/27\ 0:00 \sim 6:00\ 1/1576/3.06 \text{RF})$
 - 電子雲⇒電子のマルチパクタリング⇒圧力上昇が非線形
- 非線形上昇が顕著な場所⇒対策
 - IR部(Phase-1時はアルミパイプ+TiNコーティング)⇒銅+TiNコー ティング(新規ビームパイプ、QCSもあり、Phase-2では要観察)
 - 筑波直線部(特に電磁石が少ないところ、銅あるいはアルミアンテ チェンバー+TiNコーティング)⇒PMU
 - アーク部(アルミアンテチェンバー+TiNコーティング) ⇒PMU
 - シケイン部(銅アンテチェンバー+TiNコーティング) ⇒PMU
 - SRM部(アルミアンテチェンバー+TiNコーティング) ⇒PMU
 - 富士クロス部(新規はアルミパイプ+TiNコーティング、他はKEKB 時のビームパイプの再利用) ⇒PMU、およびKEKB時代のソレノ イド復活
 - 富士入射部(アルミパイプ+TiNコーティング) ⇒PMU

■ 長さ160 mmの鉄ヨークにφ30 mmの永久磁石を8個とりつけた PMUを40 mm間隔で並べる。⇒作業終了した。

PMUの磁場分布

新規ビームパイプに取り付けたPMU

Phase-2への対策

ドリフト部へのPMU取付の効果

- CLOUDLANDを使った電子密度シミュレーション(福間氏)
 - ビーム方向の周期的条件を入れている。
 - ベローズの場合と同じ条件。ただし、 $\delta_{max} = 1.2$ 。
- ▶ 設計パラメータ(1/2500/2RF, 3.6 A)でも電子密度は10¹⁰ m⁻³台。

Phase-2への対策

ドリフト部へのPMU取付時の問題

- ただし、Q電磁石の傍には鉄ヨーク付きPMUは磁場への影響が大き いので設置しない。200 mm以上離して設置する。もっとも多いのは 約360 mm。
- 補正電磁石についても同様。200 mm以上離して設置する。もっとも 多いのは420 mm。
- ▶ 必要であれば、励磁曲線を変更する(検討中)。

アルミパイプ(188 mm)の中に永久磁石が21個入っている 上下で6本。

Phase-2への対策

- 富士交差部新しいアルミ製ビームパイプ(TiNコーティング)には PMUを取り付けた。
- 富士入射部の新しいアルミ製ビームパイプ(TiNコーティング)に もPMUを取り付ける予定。

富士交差部のビームパイプ

富士交差部付近のビームパイプに巻かれたソレノイド

Phase-2以降への対策

- Phase-2(目標1.5 A、1576バンチ、3RFバケット~0.3 mA/bucket)まではこれまで述べた対策で大丈夫だと思われる。
 - その後は磁場(>50 G)のある領域を増やしていく。必要になると 思われる場所は、
 - 四極、六極電磁石の傍(まだ空間が残っている場所がある)
 - ▶ 補正電磁石(ステアリング)の中(現在検討中)
 - BPMブロック周辺
 - RF区間(銅パイプ、KEKB時にはソレノイドを巻いていた)
 - ウィグラー部(四極電磁石等クリアリング電極はない)
 - 高β部(筑波直線部)(より密に)
- TiNコーティング表面のエージング、ビームパイプ内の圧力低下 が進むことを期待。
 - ベーキングしてみる?
- その他、心配される場所
 - IR:QC1RP付近。散乱光があると磁場に電子が捕捉される。
 Phase-2では様子見。

- Phase-1中、陽電子リングでECEが観測
- アルミ合金製ベローズチェンバー内電子雲による不安定性
 - アルミ部分の電子密度は閾値の約20倍。閾値はシミュレーション 結果と合っている。
 - PMU取付でECEは抑制された。
 - この状態ではKEKB初期より閾値は高く、TiNコーティングとアンテ チェンバーが効いていると考えられる。
- 高電流での電子雲不安定性
 - 電子雲は主にドリフト部(TiNコーティング+アンテチェンバー部)にあると推定。閾値はシミュレーション結果と合っている。
 - ▶ ソレノイドが無い時の予想(推定)にも近い。
 - 試験的に置いたPMUで圧力変化は線形となった。
 - TiNコーティングの Smax は実験室室で得られた値よりはまだ高そうだ。
- Phase-2およびそれ以降への対策
 - リングのドリフト部等へPMUを取り付ける。一部はソレノイドを復活。
 - 必要ならより密に取り付けていく。(BPM部、補正電磁石内、筑波直線部のβが大きいところなど)

2017/9/8

SuperKEKB 国内 Review @KEK

ご清聴ありがとうございました。

SuperKEKB 国内 Review @KEK

41

Scrubbing time [h]

SuperKEKB 国内 Review @KEK

Phase-2以降への対策

- 参考:ステアリングの中(丸パイプを仮定、STHに近い)
- 電子密度のシミュレーション
- e+/bunch Nb: 4.9E10 (0.78mA/bunch), dmax 1.2@300eV、Bunch spacing: 4 buckets、5120/4 bunchの時1A。
- 50 G以上の磁場があると、*n_e*は1E10台。
- ▶ ただし、ステアリングによって磁場強度が違う。

2016/6/25 9:10 1002 mA

ECE対策:アンテチェンバーとTiNコーティングの効果の例

- アーク部テストチェンバーのTiNコーティング有り、無しの部分に電子モニ ターを取り付け、電子電流を比較してTiNコーティングの効果を確認。
- KEKB時代の結果と比べてアンテチェンバーの効果を確認。
- 低電流にてアンテチェンバー内の電子密度小⇒アンテチェンバーの光電 子抑制効果
- 高電流にてTiNコーティング部の電子密度小⇒TiNコーティングの二次電子抑制効果
 Electron current vs beam current

Test chamber in LER arc section

- Established counter measures
 - Solenoid filed at drift section (~50 G): Effective to both photoelectrons and secondary electrons.
 - Ante-chamber scheme: Effective to photoelectrons. Adopted at PEPII LER
 - TiN coating (Reduction in SEY): Effective to secondary electrons. Adopted at PEPII LE_o

- Clearing electrode
 - The electron density decreased to less than ~1/100 at Velec > ~+300 V compared to the values at Velec = 0 V (W) and a TiNcoated flat surface.

- Two-time experiments.
- Electron currents for the thermal-sprayed tungsten $(V_{elec} = 0V)$ is similar to the case of flat TiNcoated surface. \leftarrow Rough surface?
- The second result was lower than the first one.
 Aging of surface?
 - No extra heating of electrode and feedthrough was observed.

- Groove surface
 - The electron density decreased to 1/6~1/10 compared to the case of a flat TiN-coated surface (b = 20). That is, less than ~1/10 compared to flat copper.

Electron densities for grooves surfaces in these parameters were lower than the case of a flat TiN-coated surface. Smaller electrons even if no-coating: TiN coating improves the effect, but the groove structure seems much effective to reduce SEY. Less density for smaller β and R_{t} .