ERRORS AND TUNING PROCESS

KIKUCHI M. MAC'95/6/07

A. Objectives

- Estimate the error tolerances of arc elements.
- Clarify the importance of the beam-based tuning process and its role in the tuning procedure.

--> Guidelines for the development of beambased measurement.

B Simulations of tuning procedure

- 1. Effects considered
 - Emittance ratio criterion : $\epsilon_y/\epsilon_x < 2\%$
 - Dynamic aperture criterion :

$$2J_X/\epsilon_X/1000 + 2J_Z/\epsilon_Z/600 > 1$$
 (dp/p > 1.7% with $n_X=0$ and $n_X > 32$ with dp/p =0) Also --> τ (Touchek) > 35000 sec

Miss-crossing at IP for field ripples.

- 2. Errors and assumptions
 - The magnitude of errors are given in Table
 -1.0 (static errors)

Table -1.0: Errors used in simulation¹⁾

element	$\Delta x(mm)$	$\Delta y(mm)$	$\Delta\theta(\mathrm{mrad})$	Δ k/k
quads	0.15	0.15	0.2	1×10^{-3}
$quads(QC)^{2)}$	0.01	0.01	0.1	1×10^{-4}
sexts	0.15	0.15	0.2	2×10^{-3}
bends		0.1	0.1	2×10^{-3}
correctors		0.1	0.2	
BPM ³⁾	0.075	0.075		

¹⁾The figures are for one standard deviation (σ) .

Table -1.1: Tolerance of field jitter

element	relative jitter (σ)	what limits	
Bends	1×10^{-5}	$\Delta x^* = 3.4 \mu \mathrm{m}$	
	1 × 10	$(\sigma_x^* = 80 \mu \mathrm{m})$	
Quads	1×10^{-4}	$\epsilon_y/\epsilon_{y_0} = 5 \pm 19\%$	
	1 × 10	$A/A_0 = 3 \pm 14\%$	
Quads(QCS)	1×10^{-5}	$\epsilon_y/\epsilon_{y_0} = 10\%$	
	1 × 10	$A/A_0 = 10\%$	
Sexts			
Correctors	1×10^{-5}	$\Delta y^* = 0.1 \mu \text{m}$	
		$(\sigma_y^* = 2\mu \mathbf{m})$	

* TRISTAN (2~3)x117⁻⁵ 50 Mg.

²⁾ Two quads near IP(QCS and QC1).

³⁾ Assume Beam-based measurement of BPM offset.

- Consider only LER. The situation of the HER is expected to be similar since its arc lattice is basically identical to that of LER.
- Errors of quads near the IP (QCS and QC1) are very small. This is to magnify the effects of errors in the arc section.
- Every sextupoles have a mover with a maximum stroke of 3 mm in both horizontal and vertical directions.
- Offset of BPMs relative to the magnetic center of quads are measurable with an accuracy of 75 µm using beam-based method.
- Magnetic center of the sextupole is measurable with an accuracy of 75 μm using beam-based method.
- Strength errors of quads are measurable with an accuracy of 0.1% using direct or beam-based measurement.
- The errors obey Gaussian distribution with cut-off at 3 standard deviations (3σ).

3. Simulation results

3.1 Static errors

• Simulations with 20 different random seeds. $(\vee_{\mathbf{X}}, \vee_{\mathbf{Y}}) = (46.52, 46.08)$

initial conditions: $2J_X=n_X^2 E_X 0$

$$2J_y=0.11^* 2J_X$$

$$dp/p=-2 \sim +2\%$$

- ! Sextupole re-alignment is very effective to improve the vertical emittance.
- ! The ordinary orbit correction and the sextupole re-alignment are sufficient in almost all the cases to fulfill the requirements.
- ! Measurement of the field error of quads with an accuracy of 0.1% is important for precise optics tuning.

3.2 Field ripples

Field ripples with a frequency for which the orbit feedback does not work may degrades the performance..

- · Criteria:
 - Emittance growth and deterioration of dynamic aperture are less than 10%
 - Deviation of beam position at IP does not exceed $0.1\sigma^*_{X,V}$

D Summary

static errors

- Required emittance ratio and the dynamic aperture is achievable under the errors given in Table -1.0 if the sextupole has a mover and assumed beam-based measurement technique is available.
- Sextupole re-alignment is very effective to improve the vertical emittance.
- Measurement of the field error of quads with an accuracy of 0.1% is important for precise optics tuning.

Field ripples

- Tolerance of field ripples was estimated.

Beam-based measurement

beam-based measurement should be developed.