RF System Overview

K. Akai

KEK

KEKB Machine Advisory Committee Feb. 11, 2000

ARES cavity for KEKB

Superconducting Cavity for KEKB

RF-related Machine Parameters

	GeV	⋖	m m		> M	MHz	ms	\geq	\geq	M M
HER	8.0	- -	4	0.01 - 0.02	8.7 - 16.2	508.887	23	3.8	0.14	4.0
LER	3.5	5.6	4	0.01 - 0.02	4.9 - 9.4	208	43 / 23*	$2.1 / 4.0^*$	0.57	2.7 / 4.5*
	Beam energy	Beam current	Bunch length	Synchrotron tune	RF voltage	RF frequency	Energy damping time	Radiation power	HOM loss	Total beam power

*with wigglers for LER

Example of RF Parameters

Ring Cavity Relative phase	deg.	LER w/wiggler ARES	HER hybrid SCC+ARES 10
RF voltage Number of cavities	> M	10	17.9
R/Q Q.	G	14.8 1 1×10 ⁵	93 / 14.8 >1×10 ⁹ / 1 1×10 ⁵
$Q_{L} (x10^{4})$		3.0	8.0 / 3.0
Input coupling Cavity voltage	MV/cav.	2.7	1.5 / 0.5
Input power Wall loss	kW/cav. kW/cav.	375 154	250 / 340 - / 154
Beam power Number of klystrons	kW/cav. s	221 10	250 / 250 8 / 6
Klystron power	ΚW	~810	

Number of Accelerating Cavities

revised, Jan. 2000

Feb.'00 ~Jul.'00 ~Jan.'00 Oct. 99 ~Jul.'99 Dec. '98

plan 1 plan 2 (full spec) Oct.'00 ~

Ring

16 20 6~7 MV 8~9 MV

16 5~6 MV 16⁽¹⁾ 5 M V 12 4 MV LER Fuji (ARES) Operating Vc 10 12 8 8 ~ 16 MV ~ 18 MV

6 4 8MV HER Oho (ARES) Nikko (SCC) Operating Vc

(1) Two cavities were not operated in 1999.

Design value of Vc/cavity is 0.5MV/ARES and 1.5MV/SCC.

Operating status

(~Feb. 2000)

	LER	HER
Beam current (mA)	600 (2600)	514 (1100)
Operating Vc (MV)	5 (5-10)	11 (10-16)
NC/SC		4.2 / 6.8
No. of cavities	16 (20)	NC: 10 (12)
,		SC: 4 (8)
Operating Vc / cavity	0.31 (0.5)	NC: 0.42 (0.5)
(MV)		SC: 1.7 (1.5)
Conditioned up to (MV)	0.4 (0.5)	NC: 0.45 (0.5)
Tu-		SC: >2.2 (1.5)
Total Beam power (MW)	1.0 (4.5)	2.1 (4.0)
NC/SC		0.7 / 1.4
Beam power / cavity (kW)	64 (225)	NC: 130 (170)
		SC: 380 (250)
Beam power / cavity (kW)	170 (225)	
(by shifting RF phase)		生 道 一
HOM power/cavity (kW)	>0.5	. 5.2. 27
		SC: 2.6 (5.0)

Numbers in () is design values.

Increase the beam power in each station by shifting the RF phase.

Operation for Physics Run

- 1999 Jul. ~ Aug. (12 days, 25 pb-1)
- 1999 Oct. ~ 2000 Jan. (34 days, 450 pb-1)

Here, the physics run from Oct.1999 to Jan.2000 is summarized.

Typical parameters

	LEF	HER
(OctDec. 1999) Beam current No. of bunches Total RF voltage	400mA ~870 5MV	250mA ~870 9MV
(Jan. 2000) Beam current No. of bunches Total RF voltage	550mA ~1000 5MV	350mA ~1000 9MV

Loss time due to RF troubles

 SCC quench (3 times) 	1.5 hours
 ARES water flow interlock (twice) 	3.5 hours
 1MW dummy load trouble 	2.0 hours
 Klystron PS crawbar work (twice) 	1.0 hours
 Control modules troubles 	2.0 hours

Total loss time due to RF is only 10 hours in 34 days physics run operation.

- Other faults (No beam loss is caused.)
- Coupler arc and/or vacuum interlock in ARES.
- → Several-hour conditioning during machine maintenance reduces the fault rate in steady operation below 0.1 /cavity/day.
- When a high current beam is aborted, some RF stations trip:
- (i) nearby arc sensors work due to noise.
- → Noise protection was effective to some extent.
- → Inhibit gate during the beam abort solved the problem.
- (ii) One SC station (D11-D) trips by breakdown detector due to transient response to beam abort.
- → Trying to solve by changing transient response of the system.

No beam loss even when RF trips

 Even one or two ARES stations trips, no beam is lost in most cases.

This is because:

- (i) Sufficiently high voltage is provided by other stations.
- (ii) Resonant frequency of tripped cavities is controlled at a safe frequency so that it causes neither instability nor large beam-induced power.
- (iii) Our RF control system allows the tripped stations, after the cause is solved, to smoothly switch-on without losing the high current beam.

Keeping the longitudinal collision point

- Error in the relative RF phase between the two rings shifts the collision point.
- RF phase of whole ring is stabilized within 1 degree.
- The change of synchronous phase due to the change of bunch current or bunch gap transient is estimated to be about $2\sim3$ degree for the design current.
- Shift of synchronous phase due to a change of RF voltage can be compensated by changing the ring phase.
- Belle detector data shows no big shift of longitudinal collision point throughout the physics run.

Zero-mode oscillation damper

- Longitudinal beam oscillation can reduce the luminosity.
- Before summer 1999, we observed the 0-mode synchrotron oscillation of about \pm 0.5 degree (\pm 0.8mm) even at a small current.
- ullet The zero-mode damper sufficiently reduced the oscillation to $\pm\,0.06$ degree ($\pm\,0.1$ mm).

Other modes of oscillation

 No coupled-bunch oscillation has been attributed to RF system.

RF System for KEKB Superconducting Cavity

K. AKAI

Figure 2: Block diagram of the tuning control system for ARES.

Block diagram of the 0-mode damper for KEKB RF

Major troubles (since last MAC: Mar. 1999)

- The rubber vacuum seal at the flange connection between the storage and coupling cavity of ARES was burned.
- → Detuned until the storage cavity was replaced in the next shut down.

In summer shut down in 1999, every ARES cavity in LER was vacuum-sealed by welding the stainless steel lips at the flange connection after removing the rubber seal.

6 cavities for HER still have the rubber seal. They will be removed in summer 2000.

- Vacuum trouble in a ARES cavity (D8-D#2). Plating solution trapped near surface leaked out.
- → Detuned from Oct. to Dec. 1999. After baking in winter shut down, it returned to operation.
- A door-knob transformer at the input coupler was burned. (Caused by bad brazing?)
- Two klystrons were damaged.
- Some troubles in other components. (dummy loads, control modules, etc)

RF system upgrade in summer 2000

(1) Stored beam current

- So far, beam current has NOT been limited by RF system.
- Maximum current by RF system is approximately proportional to number of cavities (i.e., beam power to be delivered).
- 1.5A (LER) and 0.7A (HER) can be supported by present RF system.
- Upgrade is necessary for much higher current.

(2) Required RF voltage

• At present, luminosity is NOT clearly limited by RF voltage.

• Higher Vc may be needed? - In particular, in view of photo-electron related instabilities in LER: A simulation showed larger vs and short oz reduce the growth rate.

(3) Margin

• For stable operation, it is desired to have sufficient margin to cover troubles in one or two RF stations.

(4) Cavities for upgrade

- ARES's have been manufactured and high-power processed. They can be installed in tunnel in summer 2000 on demand.
- SCC's are in preparation on schedule. In view of the term of validity (Sep. 2001) regarding examination, it is strongly desired to install them in summer 2000.
- Adding SCC's in D10, where radiation is stronger than D11, may give useful information for crab cavities.

(5) High power and low-level RF system

 Most of high power components are available. Both high power and low-level systems can be constructed in summer shut down to meet the upgrade plan.

(6) Other things

- About 2.5 months shut down is required for the RF upgrade.
- Cost and available budget

We can upgrade the RF in this summer, if budget allows.

Summary

- RF system has been operating very stably. Loss time due to all RF troubles is small (for example, 10 hours in 34-days physics run).
- The cavity performance of ARES and SCC is excellent. In particular, trip rate of SCC is only twice /month.
- No sign of HOM-induced beam instabilities has been observed.
- Collision point is kept stable.
- The zero-mode synchrotron oscillation was sufficiently reduced by the zero-mode damper.
- Up to now, the RF system has limited neither stored beam current, nor luminosity.
- Upgrade of RF system is scheduled in summer 2000.