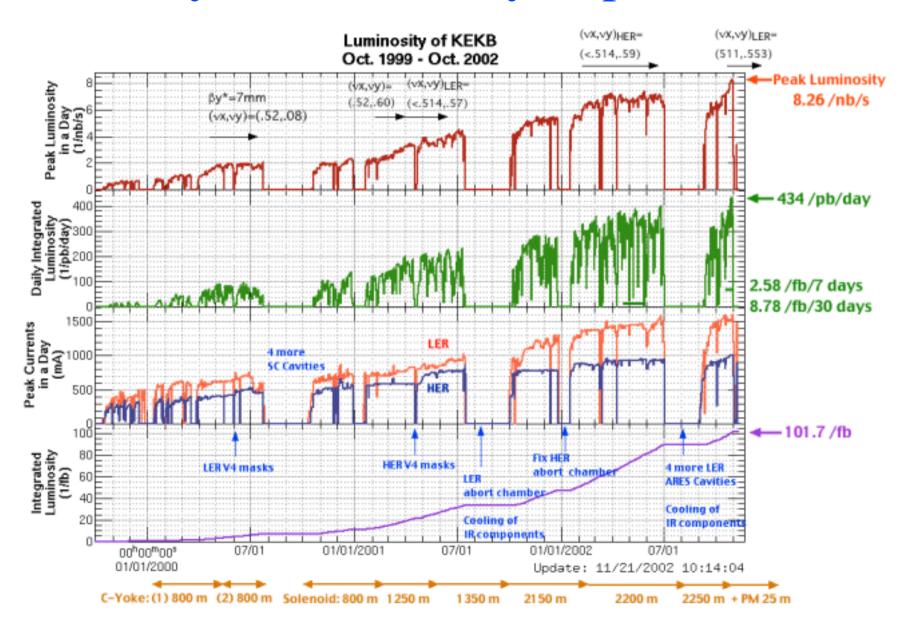
Further Luminosity Upgrade

Y. Funakoshi (KEK)

Contents


- Three ways of considering luminosity upgrade
 - Comparison with the design
 - History of luminosity improvements
 - Luminosity limiting issues
- Summary

Comparison with design

		LER	HER
Horizontal emittance	nm	18 (18)	24 (18)
Total beam current	mA	1454 (2600)	949 (1100)
Number of bunches		1184 (~5000)	
Bunch current	mA	1.23 (0.52)	0.801 (0.22)
Bunch spacing	nsec	8 (2)	
Synchrotron tune		-0.0236	-0.0207
Betatron tunes vx/vy		45.511/43.553 (45.52/45.08)	44.513/41.582 (47.52/43.08)
Beta's at IP βx/βy	cm	59/0.62 (33/1)	61/0.7 (33/1)
Beam-beam parameters ξx/ξy		0.090/0.053 (0.039/0.052)	0.078/0.045 (0.039/0.052)
Peak luminosity	/cm ² /sec	8.26*10 ³³ (1*10 ³⁴)	

(): design values

History of Luminosity improvements

Luminosity limiting issues

Luminosity formula

$$L = \frac{\gamma_k}{2er_e} \frac{R_L}{R_{\xi y}} \frac{I_k \xi_y}{\beta_y^*}$$

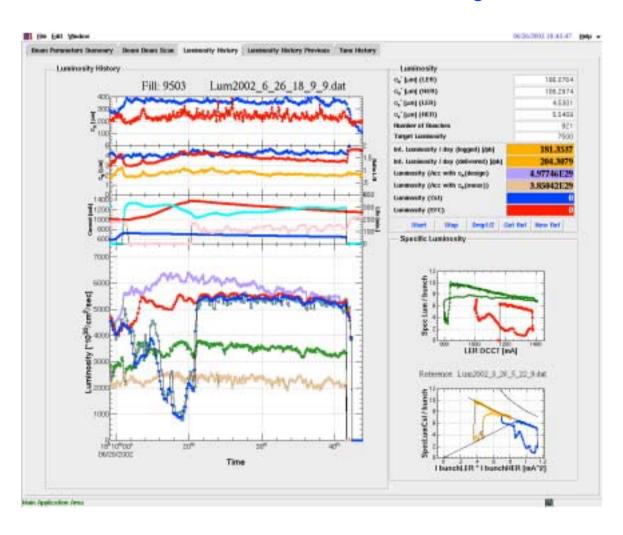
Three key parameters for higher luminosity

Beam currents

Vertical beta function at IP

Vertical Beam-Beam parameter

Beam currents


- Record values at KEKB
 - HER 1006mA(record) cf. 1100mA(design)
 - LER 1650mA(record) cf. 2600mA(design)
- Issues
 - Effect on luminosity
 - Hardware tolerance
 - Bunch spacing problem
 - RF power

Effect of higher beam currents on luminosity

Machine study on June 26 2002

- Method
 - ◆ Decreased number of bunches by 33% (with the same bunch spacing)
 - ♦ Increased bunch currents
 - Observed achieved luminosity (times 1.33)
- Results
 - ◆ Increase of LER beam current did not result in a higher peak luminosity. -> due to ECI ?
 - ◆ Increase of beam currents in both rings resulted in a higher peak luminosity.
- Increase LER beam current in actual physics run
 - Result
 - Higher LER current did not bring a higher peak luminosity.

Increase LER beam current Machine Study (June 2002)

Machine Study:

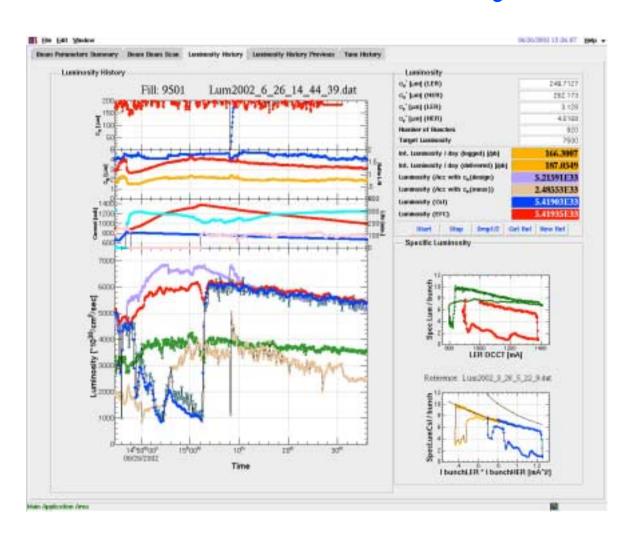
 I_{LER} (max) = 1380mA -> 1835mA

 I_{HER} (max) = 720mA

-> 958mA

 $L_{peak} = 5.58 / nb/sec$

-> 7.42 / nb/sec


Physics Run:

 I_{LER} (max) = 1380mA

 I_{HER} (max) = 950mA

 $L_{peak} = 7.3 / nb/sec$

Increase beam currents of both rings Machine Study (June 2002)

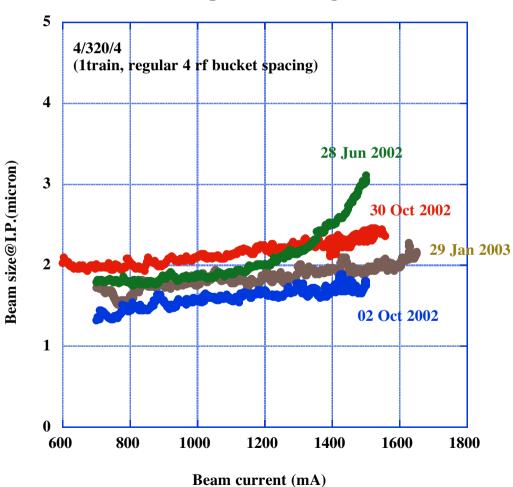
Machine Study:


 I_{LER} (max) = 1380mA -> 1835mA I_{HER} (max) = 815mA -> 1084mA I_{peak} = 6.16 /nb/sec

 $L_{\text{peak}} = 6.16 / \text{nb/sec}$ -> 8.19 / \text{nb/sec}

Physics Run:

 $I_{LER} (max) = 1380mA$ $I_{HER} (max) = 950mA$ $L_{peak} = 7.3 / nb/sec$


Increase of LER beam current in actual physics run (June 2002)

LER single beam blowup

From Fukuma

Beam blowup at LER (long train)

Hardware tolerance to high beam currents

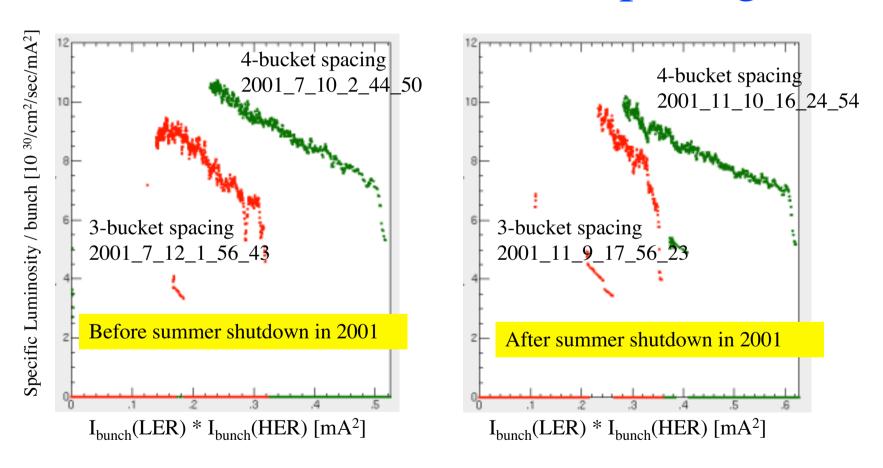
■ IP beam chamber

- Present restriction: 2200mA in the sum of the two beams
- Investigation on the cause of the vacuum leak, Temperature rise of IP chamber -> more currents?

Other hardware components

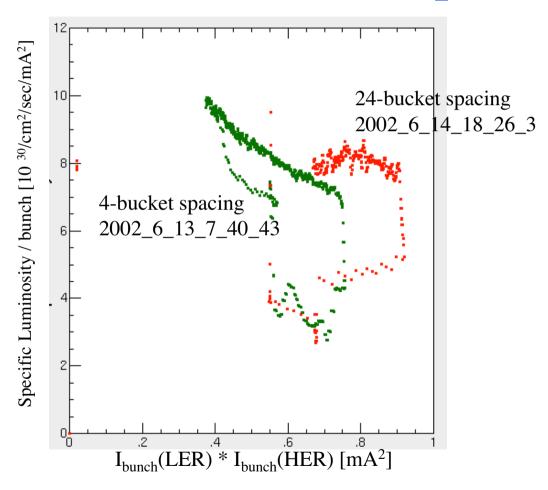
- We experienced a lot of troubles due to high beam currents.
- No substantial difficulty at the present level of beam currents.
- HOM heating issues
 - ♦ It is desirable to decrease bunch currents by increasing the number of bunches. -> Bunch spacing problem
- Next target
 - ◆ 1.1A (HER), 2.0A (LER)

Bunch spacing problem


Observations

- The specific luminosity depends on bunch spacing.
- Longer bunch spacing gives a higher specific luminosity.

Cause of the problem


- This problem can not be attributed to the beam-beam effect.
- The LER single beam blowup does not explain this problem, since the problem occurs even below the threshold of the blowup.
- No conclusive cause for this problem has not been found yet.
 - ◆ A synergistic effect of the beam-beam and the ECI might be relevant to this problem.

Comparison of specific luminosity with 3 and 4 bucket spacing

Specific Luminosity / bunch = $L/N_{bunch}/I_{bunch}(LER)/I_{bunch}(HER)$

Comparison of specific luminosity with 4 and 24 bucket spacing

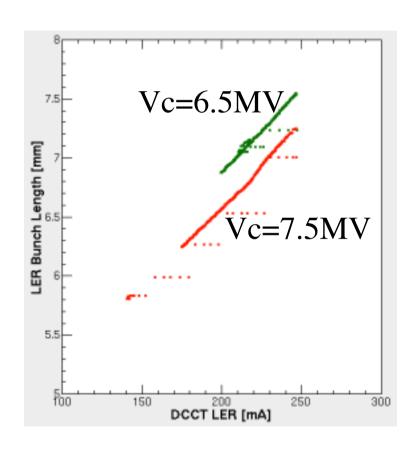
RF Power

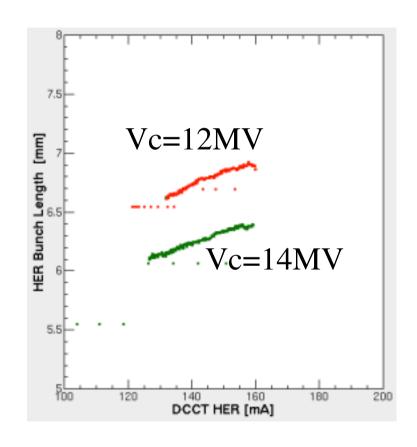
LER

- We already have a full set of RF (ARES) cavities.
- We are ready to store a design beam current of 2.6A from the viewpoint of RF power.

HER

- 2 ARES cavities are lacking for a full set.
 - ◆ The design beam current of 1.1 A is maybe possible to stored.
- In summer 2003, 2 ARES cavities will be installed.
 - We will be able to store 1.2 A in autumn.


β_y* (vertical beta function at IP)


- Record values at KEKB
 - HER 7.0mm (present) cf. 10mm (design)
 - LER 6.2mm (present) cf. 10mm (design)
- Issues
 - Dynamic and physical aperture
 - ◆ There may be small room for squeezing the vertical beta function further.
 - Bunch length
 - ◆ The bunch length in the usual physics run is already comparable with the vertical beta function.

Luminosity with shorter bunch length Machine Study June 14 2002

- Vc (RF voltage)
 - HER: 12MV -> 14MV
 - LER: 6.5MV -> 7.5MV
- Bunch length (measured by bunch spectrum monitor)
 - HER: ~6.9mm -> ~6.3mm
 - LER: ~ 7.7 mm -> ~ 7.3 mm
- Luminosity
 - No significant improvement in the luminosity was observed with the higher Vc operation.
 - Tuning time was insufficient?
 - A beam-beam simulation predicts a higher luminosity with the measured bunch length by 6.5%.

Bunch Length with higher Vc

204 bunches: 24 bucket spacing

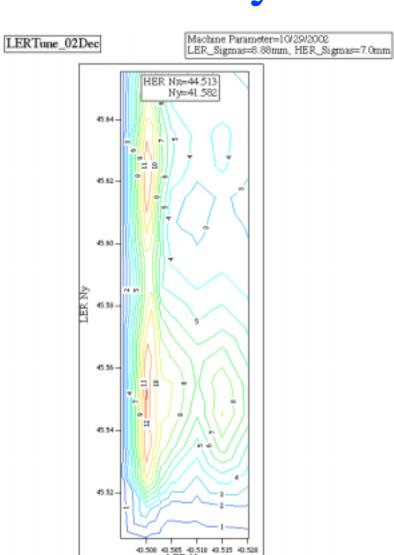
ξ_{v} (Vertical Beam-Beam parameter)

- Record values at KEKB
 - HER 0.045 (record) cf. 0.052 (design)
 - LER 0.053 (record) cf. 0.052 (design)
- Issues
 - Tune survey
 - ECI
 - Bunch spacing problem
 - Crab cavity system

ECI (Electron Cloud Instability)

Solenoid coils

- If we switched off all the solenoids, the luminosity would be less than half or we would not be able to store the present beam current.
- Does ECI limit the KEKB performance still now?
 - The single beam blowup does not appear up to around 1800mA in the usual fill pattern.
 - The bunch spacing problem has something to do with ECI?
 - A higher LER beam current brings a higher luminosity?
 - We need more data...

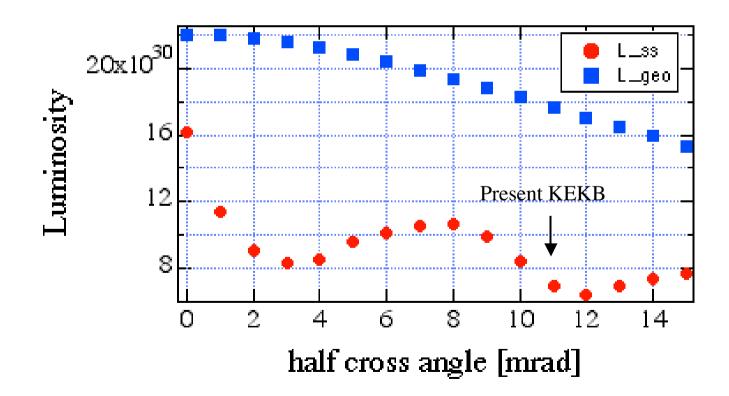

ECI [cont'd]

- Effect of more solenoid
 - There remains very small room for installation of solenoids.
 - However, there is some indications that a small amount of solenoids has effects than was expected.

Tune Survey

- An enormous amount of efforts have been devoted to the tune survey since the beginning of the KEKB commissioning.
- At present there is almost no more promising tune region than the present position.
- In Factories 2001 workshop, I found that the fractional part of tune at CESR (.53,.58) is similar to ours.

Tune Survey (Simulation by Tawada)



Crab cavity

- Beam-Beam simulation by using Ohmi's code (Tawada)
 - Luminosity will be doubled with the present machine parameters, if the crossing angle becomes zero. $-> \xi_v^* \sim 0.1$
- Beam test of crab cavity system
 - Present Plan: 1 cavity at Nikko section in HER (2005 or 2006)
 - My opinion: 1 cavity at Nikko section in both rings (2005 or 2006)

Effect of crab cavity system (simulation by Tawada)

Crab_03Jan

Summary [1/3]

- An introduction of the crab cavity system is the most promising way of raising the luminosity, if the simulation is correct.
 - We should introduce it in both rings.
- Increasing the HER beam current is effective for a higher luminosity.
- Increasing the LER beam current might be effective for a higher luminosity. -> We need more study.
- To mitigate HOM related problems, it is desirable to increase the number of bunches by reducing bunch spacing. -> bunch spacing problem?

Summary [2/3]

- There is an indication that ECI has some effects on the machine performance even below the threshold of the single beam blowup.
 - We maybe need more solenoids.
- The next target of beam currents are:
 - HER: 1.1A, LER:2A.
- The present beam current limitation comes from the issue on the IP beam pipe.
 - Study on this problem is one of the most important issues at the present KEKB.

Summary [3/3]

There is some (maybe small) room to get a higher luminosity by shortening bunch length and/or squeezing β_v^* further.