Bunch Feedback Systems

KEKB Review, Feb. 10-11, 2003

S.Hiramatsu, J.Flanagan, E.Kikutani, M.Tobiyama

Present Status

Troubles since last MAC

LER transverse feedback kicker broken

High power attenuator burned

High power wideband amplifies broken

Development of the Next Generation Digital Filter Systems for SuperKEKB/SuperPEP-II/Light sources.

Present status

Without transverse feedback systems

Strong horizontal and vertical instabilities appears

HER <40mA, LER <60mA (horizontal)

With transverse feedback

Single beam: HER >850mA, LER >1400mA

Colliding mode: ~1000mA(HER) ×1600mA(LER)

Feedback related systems

Bunch current monitors

Betatron tune measurement systems(global & gated)

Bunch oscillation monitor systems with beam loss trigger also working very well! (by Fukuma)

Heating of vacuum components for feedback systems

Marginal up to present maximum current (~1600mA)

Bunch Oscillation Recorder (BOR)

Very useful for abort and instability diagnostics Examples of HER beam oscillation at beam abort

Troubles

Breakdown of LER transverse kicker(Mar/2002)

Direct cause: use of incorrect screws to tie kicker plate to feedthrough. Moreover...

Improper mechanism to cure lengthening of kicker plates.

History of troubles of kicker feedthroughs.

[1] Up to Summer 2001

[2] Summer 2001 - Summer 2002Second type (Fixed feedthrough + slide mechanism on plate)

Ohmic loss of beam induced current at lb~1400mA

Cu plate ~0.93W

Kover rod ~1.2W

T<150deg, L<1mm: tolerable

LER Kicker breakdown on 10/Mar/2002

[3] From Summer 2002

Third type (present feedthroghs for both HER/LER)

BeCu spring rod : downstream(rf power ampl. side) only
No resonance on the neck structure up to ~4GHz by HFSS

Burnout of a high-power attenuator for the LER transverse kicker

N-connectors of the attenuator and the cable has been melted.

Add reflection power alarm.

Two high-power amplifiers has damaged (LER 1/ HER 1)

LER: one final FET chips broken

HER: Power supply problem (trouble in SW PS)

Development of the Next Generation Digital Filter Systems for SuperKEKB / SuperPEP-II / Light sources.

International Collaboration

SLAC (J. Fox, D. Teytelman, L. Beckman, M. Tobiyama) KEKB (M.Tobiyama + feedback/monitor group) + DAFNE, ALS, APS, BESSY-II, etc..

*Letter of intent to SLAC by J. Fox; dated 1-28-03 GBoard Processing Channel project proposal

Design/simulation on FPGA and ultra fast logic system is underway since Jun/2002 and critical high-speed signal processing channel has been verified via functional and timing verification up to now.

Remaining tasks - the real detailed engineering.

Digital filter system for bunch by bunch feedback systems

PEP-II

DSP based digital feedback system (downsampled).

Longitudinal only

Completely programmable and flexible.

ALS, DA NE, PLS, BESSY-II, SPEAR...

KEKB

Hardware two-tap FIR filter system non-downsampling

with custom MPX/DMPX ICs

Transverse & Longitudinal

Very limited flexibility

KEKB only

Very high-speed FPGA(ex. Vertex-II) with huge logic space and enough memory space available.

High-speed ADC (1.5GSPS), Logic chips (>3GHz) available.

Very dense SRAM available

Specifications

- Support bunch spacing down to 0.66 ns sampling at 1.5 GHz.
- Support quasi-arbitrary harmonic numbers.
- Independent processing for all bunches on all turns required for transverse feedback.
- Diagnostic memory capable of holding 20 ms of data at the full rate
- Support downsampled processing reuse the hardware to get longer filters
- Support downsampling for diagnostics for studying slow events
- Support long FIR or IIR filters

Functional simulation of a 20-tap FIR channel

A 20-tap FIR channel was designed for the FPGA implementation.

- 8 bit ADC data
- 8 bit DAC output
- · 16 bit coefficients
- Full width accumulators (24-29 bits)
- Shift gain of 0-7 bits
- Output saturation to 8 bits
- FPGA resource usage 13%
- Compiled implementation has 6.3 ns cycle time - for 1.5 GHz we need 9.3 ns.
- Functional simulation (Innoveda Fusion) for 8 groups (DAΦNE case) using white noise input signal
- Compared to bit-true MATLAB simulation

Schedule

Jun/02 – Apr/03 Design of FPGA/Fast Logic/Interface

May/03 - Aug/03 Detailed engineering design for prototype

Aug/03 - Mar/04 Fabrication of 1st prototype board

Test & feedback to next prototype...

Estimated cost

FY2003 PCB board design \$30k

Prototype board fablication \$75k

Test station \$25k

Lab test equipments \$30k

Total \$160k + travel cost \$30k

About \$100k/year for design/fablications (roughly 3 years)

until final version board +\$200,000

Production cost for final board \$20,000/board

Travel expenses ?

International collaboration between SLAC/PEP-II and KEK/KEKB.