Luminosity boost by head-on (crab) collision

KEKB Accelerator Review Committee, KEK, 10-11 Feb, 2003

K. Ohmi, M. Tawada, K. Oide (KEK)

Introduction

- Target luminosity
- $$\begin{split} & \Box L_b = 2 x 10^{31} \sim 2 x 10^{32} \ cm^{-2} s^{-1} \\ & \Box N_L \xi / \beta_y = 1.6 x 10^{12} \sim 1.6 x 10^{13} \ m^{-1} \\ & \Box N_H = 3.5 \ N_L / 8 \end{split}$$

$$L_{tot} = \frac{N \gamma \xi_y}{2 r_e \beta_y} f_{rep}$$

How do we choose these parameters?

- $\label{eq:L} \begin{array}{l} \square \ \ L= \ 10^{35} \ cm^{-2} s^{-1}, \ \ N_L \xi / \beta_y \ = \ 1.6 x 10^{12} \\ \beta_y \ = \ 3mm, \ \xi_y \ = \ 0.05, \\ N_L \ = \ 9.6 x 10^{10} \ , \ I_L \ = \ 8 \ A \\ \ \ Crossing \ angle \ = \ 15 \ mrad \end{array}$

Machine Parameters of the SuperKEKB

	LER HER			
Horizontal Emittance	33 33		nm	
Vertical Emittance	2.1	2.1	nm	
x-y coupling	6.4	6.4	%	
Beam current	9.4 4.1		Α	
Number of bunches	5018 (2% ä			
Bunch current	1.87	1.87 0.817		
Bunch spacing	0	m		
Half crossing angle	1	mrad		
Luminosity reduction R _L	0.7			
້ _{ຈັx} reduction R _{້ຽx}	0.6			
_{້ອັy} reduction R _{້ອັ} y	0.9			
Bunch length	3 3		mm	
Radiation loss U _O	1.23	3.48	MeV/turn	
Betatron tune v_x/v_y	45.515/43.57 ?	5.515/43.57 ? 44.515/41.57 ?		
beta's at IP β_x^*/β_y^*	15/0.3	15/0.3	cm	
beam-beam parameters हू, / हु,	0.068/0.05	0.068/0.05		
Beam lifetime	~150	~150	min.	
Luminosity	1	10 ³⁵ /cm ² /sec		

Super KEKB

WWW page

Do we get the luminosity?

Collision scheme
 Flat beam with/without crossing angle
 Long bunch
 Round beam
 Four-beam

Computer simulations of beam-beam interactions inform the feasibility for the high luminosity.

Beam-beam simulation methods

Weak-strong model

One beam is represented by macro-particles, while another beam is represented by fixed Gaussian charge distribution.

Strong-strong model

Both beams are represented by macro-particles.

Crossing angle and crab crossing

Transformation from Lab. frame to headon frame.

$$x^* = \tan \phi z + [1 + h_x^* \sin \phi] x$$

$$p_x^* = (p_x - h \tan \phi) / \cos \phi$$

$$y^* = y + h_x^* \sin \phi x$$

$$p_y^* = p_y^* / \cos \phi$$

$$z^* = z / \cos \phi + h_z^* \sin \phi x$$

$$p_z^* = p_z - p_x \tan \phi + h \tan^2 \phi$$

$$h = p_z + 1 - \sqrt{(p_z + 1)^2 - p_x^2 - p_y^2}$$

Linear part

(1)	0	0	0	$\tan\phi$	0)
0	$1/\cos\phi$	0	0	0	0
0	0	1	0	0	0
0	0	0	$1/\cos\phi$	0	0
0	0	0	0	$1/\cos\phi$	0
$\left(0 \right)$	$ an \phi$	0	0	0	1)

(ϕ : half crossing angle)

Crab cavity

Crab cavity makes z dependent dispersion $\zeta_x = -\phi$ at IP, which cancels the crossing angle effect.

$$\begin{pmatrix} 1 & 0 & 0 & 0 & \zeta_x & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & \zeta_x & 0 & 0 & 0 & 1 \end{pmatrix}$$

Longitudinal slicing

- A bunch is divided into some slices which include many macro-particles.
- Collision is calculated slice by slice.

Achieved beam-beam parameter

- Finite crossing angle scheme quite succeeded in the present KEKB.
- Achieved beam-beam parameter was not remarkably large, 0.04~0.05, though it is just our design value.
- □ The world record is ~0.07 at CESR and is ~0.1 at LEP.

Present KEKB Oct. 29, 2002

 $\Box L_{peak} = 8.26 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1} \qquad N_b = 1184$ $\Box N_+ = 7.7 \times 10^{10} \qquad N_- = 5.0 \times 10^{10}$ $\Box \varepsilon_{+,x} = 18 \text{ nm} \qquad \varepsilon_{-,x} = 24 \text{ nm}$ $\Box \beta = 7 \text{mm}$ $\Box v = 0.51/0.56$

Simulation results for the present KEKB(Oct. 29, 02)

Lspec obtained by simulation and experiment.

Experiment and simulation

Luminosity by simulation is somewhat higher than experimental value.

Experimental luminosity may be larger for longer bunch spacing. In a measurement, it was 20% larger.

□ The agreement becomes better due to a detailed choice of parameters (Tawada).

Weak-strong and strong-strong simulations coincide each other.

Study for effects of crossing angle

- Model lattice parameters
- To avoid flip-flop phenomenon, N/γ is kept equal for the both rings.
- $\Box \varepsilon_{x} = 18 \text{mrad} \qquad \varepsilon_{y} = 0.01 \ \varepsilon_{x}$
- $\Box \beta_{x} = 60 \text{cm} \qquad \beta_{y} = 7 \text{mm}$
- $\Box N_{+} = 8/3.5 N_{-}$
- $\Box \sigma_z = 7 \text{mm}$

Specific luminosity for various current product (I_+I_-) .

 $\Box \phi = 0$ mrad and 11mrad

Weak strong

strong-strong

Beam-beam parameter

Effect of crossing angle

- □ The weak-strong and strong-strong show similar results for $\phi = 11$ mrad.
- □ No beam-beam limit for φ = 0 mrad in the weak-strong.
- □ There is a beam-beam limit for $\phi = 0$ mrad in the strong-strong simulation.
- Crossing angle degrades luminosity in either case.

Crab cavity upgrades luminosity.

Super KEKB

- **Target:** $L_b = 2x10^{31} \sim 2x10^{32} \text{ cm}^{-2}\text{s}^{-1}$
- □ Super KEKB: $L_b = 2x10^{31} \text{ cm}^{-2}\text{s}^{-1}$, crossing angle 15 mrad.
- □ Hyper KEKB: $L_b = 2x10^{32} \text{ cm}^{-2}\text{s}^{-1}$, head-on collision and higher current.

Simulation for Super KEKB parameter (weak-strong)

□ The luminosity $L_b = 2x10^{31} \text{ cm}^{-2}\text{s}^{-1}$ was achieved for the crossing angle 15mrad.

□ The luminosity $L_b = 2x10^{32} \text{ cm}^{-2}\text{s}^{-1}$ was achieved at $N_L = 2.2x10^{11} N_H = 10^{11}$.

Luminosity behavior depends on tune.

Beam-beam parameter obtained by the weak-strong simulation

ξ is limited about 0.25 for the head-on collision, while is limited 0.09 for the crossing angle 15mrad.

 ξ behavior depends on tune.

Crossing angle dependence

 \Box Luminosity at $\phi = 0$ mrad is very high.

 \Box Narrow peak near $\phi = 0$ mrad.

 \Box This behavior is remarkable for large ξ .

Strong-strong simulation

Is $L_b = 2x10^{32}$ cm⁻²s⁻¹ obtained even by the strong

strong simulation?

 \Box L_{tot} = 4x10³⁵ cm⁻²s⁻¹ can be expected.

Candidate of Hyper KEKB parameter

- Low beta and head-on collision make possible a higher ξ. It means that the luminosity is achieved by lower total current.
- $\label{eq:beta_sigma_series} \begin{array}{l} \Box \ \beta_x = 15 \ \text{cm}, \ \beta_y = 3 \ \text{mm}, \ \sigma_z = 3.5 \ \text{mm}, \ \phi = 0 \\ \text{mrad}, \ \varepsilon_x = 33 \ \text{nm}, \ \varepsilon_y = 0.33 \text{nm}, \\ N_L = 2.2 \times 10^{11} \ N_H = 10^{11} \end{array}$
- $\Box L_{b} = 2x10^{32} \text{ cm}^{-2}\text{s}^{-1}, \ L_{tot} = 1x10^{36} \text{ cm}^{-2}\text{s}^{-1},$
 - $\xi = 0.2$ by the weak-strong.
- $\Box L_{b} = 8 \sim 9 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$, $L_{tot} = 4 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
 - $\xi = 0.09 \sim 0.1$ by the strong-strong.

Which is reliable w.s. or s.s.?

- Is w.s. model reliable to estimate the beam-beam limit?
- Unphysical numerical noises (PIC algorithm or longitudinal slicing) may degrade in the s.s. simulation in such a high current.
- We need more studies why the beam-beam limit observed in the s.s. simulation.
- We do not discard the result of weak-strong now.

Results for other machines obtained by w.s..

Four beam (with Ohnishi)

Collision of neutralized beams containing both of e+ and e- charge.

Eigenmode of dipole motion

$$\nabla = \nabla_{0} + \xi \quad \vec{\phi}_{\beta} \left(e^{\pm} \right) - \vec{\phi}_{\beta} \left(e^{\pm} \right) = \pi$$

$$\vec{\phi}_{\beta} \left(e^{\pm} \right) - \vec{\phi}_{\beta} \left(e^{\pm} \right) = 0$$

$$\nabla = \nabla_{0} - \xi \quad \vec{\phi}_{\beta} \left(e^{\pm} \right) - \vec{\phi}_{\beta} \left(e^{\pm} \right) = 0$$

$$\vec{\phi}_{\beta} \left(e^{\pm} \right) - \vec{\phi}_{\beta} \left(e^{\pm} \right) = \pi$$

$$\vec{\phi}_{\beta} \left(e^{\pm} \right) - \vec{\phi}_{\beta} \left(e^{\pm} \right) = \pi$$

$$\vec{\phi}_{\beta} \left(e^{\pm} \right) - \vec{\phi}_{\beta} \left(e^{\pm} \right) = \pi$$

$$\vec{\phi}_{\beta} \left(e^{\pm} \right) - \vec{\phi}_{\beta} \left(e^{\pm} \right) = 0$$

$$\vec{\phi}_{\beta} \left(e^{\pm} \right) - \vec{\phi}_{\beta} \left(e^{\pm} \right) = 0$$

$$\vec{\phi}_{\beta} \left(e^{\pm} \right) - \vec{\phi}_{\beta} \left(e^{\pm} \right) = 0$$

$$\vec{\phi}_{\beta} \left(e^{\pm} \right) - \vec{\phi}_{\beta} \left(e^{\pm} \right) = 0$$

Coherent tune shift similar as that of two-beam

4 eigenmodes of four-beam collision

Eigenvalue of each mode

Strong-strong simulation (2D)

- Hyper KEKB parameter
- Stable tune for the dipole mode.

Strong coherent motion is seen.

Summary for four-beam scheme (preliminary)

- Incoherent effect is cancelled by the neutralization, but coherent effect remains.
- Twice more resonances.
- Weak Landau damping.
- Does feed-back help the coherent mode?
- We have not had a reliable solution for the four beam scheme yet.