Improvement of Movable Mask System for High Beam Current Operation in 2002

10/Feb/2003 KEKB VAC K. Shibata

Contents

- Introduction
- Mask with Reduced HOM Design
- Search Winged HOM Damper
- Other Improvements
- **S**ummaries

Introduction

Installed Movable Masks (present)

• Improvements in 2002

 Vertical Mask HER D12 Installation of Mova

Installation of Movable Mask with Reduced HOM Design

• Horizontal Mask LER D03

> Installation of Winged HOM Damper near Movable Masks

• Mask Head D03 V-Masks Change of the material from Cu to Ti

• IR

Remove of Movable Masks

Movable Mask with Reduced HOM Design 1-Problem

• Overheating of bellows just near the V-Mask in HER at the beam current higher than 900 mA

Cause

- The HOM was excited at the mask head and went along the beam duct.
- The TE-Mode HOM went inside of the bellows through slits between RF shield fingers.

Countermeasure :

Development of improved movable mask with reduced HOM design (Extension of the ramps of the mask)

Movable Mask with Reduced HOM Design 2 - Design

- In order to reduce the power of TE-Mode HOM, the length of ramps beside the V-Mask head was expanded from 30 mm to 400 mm.
- The height of both mask is same. (15 mm)

Movable Mask with Reduced HOM Design 3 - Picture

Movable Mask with Reduced HOM Design 4 – Loss Factor

- The loss factor of the V-Mask (HER) was estimated from MAFIA T3 simulation.
- k(l=30 mm) = 0.35 [V/pC]

k(l=400 mm) = 0.16 [V/pC]

$$\frac{k(l=400 \text{ mm})}{k(l=30 \text{ mm})} \approx 0.5$$

Loss factor of the HER vertical mask as a function of the ramp length

Expectation from *k*:

The temperature rise of the bellows near the mask should reduce to 50 %.

Movable Mask with Reduced HOM Design $5 - B_{r}^{2}$

 $\mathbf{Q}_{-} B_{-}$ represents the TE-Mode HOM excited at the mask head.

 $\langle B_z^2 \rangle$ represents the power of the TE-Mode.

 $< B_{z}^{2} >$ was estimated from MAFIA simulation.

Behavior of bellows temperature against HER beam current

•
$$\frac{\Delta T(l=400 \text{ mm})}{\Delta T(l=30 \text{ mm})} = \frac{4.3}{21.0} \approx 0.2 \ (I=950 \text{ mA})$$

Experimental result:

The temperature rise of the bellows near the mask reduced to 20 %.

Movable Mask with Reduced HOM Design 7 – Discussion

• There is a discrepancy between the expectation and the experimental

Winged HOM Damper 1 – Problem

- Abnormal pressure rise near the movable masks in LER (I>1200 mA) Cause Behavior of pressure near the
 - The TE-Mode HOM exited at the H-Mask went through the RF shield at the pumping port.
 - The NEG element was heated and gas (H_2) was desorbed from the NEG element.
- Installation of the special RF shield gasket
 - The HOM went to the outside of the shielded region.
 - Abnormal pressure rise at the outside of the shielded region was newly observed.
- Longer ramp of LER mask
 - LER mask : 130 mm HER mask : 30 mm

 \times Extension of the ramp of the mask

Countermeasure :

Development of the winged HOM damper

H-mask against beam current

Winged HOM Damper 2 – Design

• Features

- The damper has delta-type wings and two SiC absorbers are installed inside the both wings.
- The wing and the beam chamber are connected with a long slot $(20 \text{ mm wide} \times 707 \text{ mm long}).$
 - \implies TE modes in a wide frequency range can be absorbed
- The finite of the TE_{11} mode with a polarization perpendicular to the wing was about 12 dB for the frequency range from 2 to 6 GHz.

View from the Inside of the beam duct 11

Winged HOM Damper 3 – Pictures

Winged HOM Damper

- The TE-Mode excited at the H-Mask is polarized horizontally.
- The TE-Mode polarized horizontally should go through the RF shield at the pumping port at the bottom of the beam duct.

 \implies The wing was placed vertically

Winged HOM Damper 4 – Installation

- Two pairs of the dampers were installed near the H-Mask in LER putting the four movable masks between each pair.
- To absorb the TE-Mode excited at the H-Mask, the wings were placed vertically and near the horizontal mask.
- Every pumping port between a pair of absorbers was screened by a special RF-shield gasket.

Winged HOM Damper 5 – Absorbed HOM power

• The absorbed HOM power was estimated from the temperature rise of the cooling water of the SiC absorbers.

Absorbed HOM Power

Loss factor of H-Mask : 0.6 V/pC (for 10 mm gap)

 \implies Power loss for two H-Masks : 20 kW (*I*=1.4 A)

Winged HOM Damper 6 – Pressure near the masks

Behavior of pressure near the H-mask against beam current

Result :

The abnormal pressure rise near the mask disappeared at the outside of the HOM dampers.

MAC2003

• Change of the mask head

Problem:

• Groove generated on the mask head

Countermeasure:

• Change of the mask head material from Cu to Ti **Result:**

- New groove was generated on 29/Jan./2003.
 - (The beam energy was changed greatly by accident.)
- We need more investigation.
- Remove of the IR movable mask

Problem:

• Heating of the components near the masks

Countermeasure:

• Remove of the IR movable mask

Result:

• The temperature was reduced .

Summary and Conclusion

- Movable Mask with Reduced HOM Design
 - The ramps of the mask was expanded from 30 mm to 400 mm.
 - The temperature rise of the bellows near the mask reduced to 20%.
- Search Winged HOM Damper
 - The abnormal pressure rise near the mask disappeared outside the HOM dampers.
 - Detailed analysis is in progress.

Both the movable mask with reduced HOM design and the winged HOM damper can relieve the heating of the components due to the TE-Mode.