Nondestructive beam energy-spread monitor using multi-stripline electrodes

T. Suwada (e-mail:tsuyoshi.suwada@kek.jp) Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Tsuyoshi Suwada /KEKB Injector Linac

Motivation

- ▲ Beam feedback controls in daily operation of the linac
 - Beam position feedback
 - Beam energy feedback
 - Beam energy-spread feedback (*under construction*)
 - → A nondestructive energy-spread monitor contributes toward further stable operation/injection of the linac.
 - → We developed the new beam energy-spread monitor with multi-stripline electrodes.
- ▲ This work was strongly motivated by a pioneering work by R. H. Miller, et al.[*HEAC'83*, pp.602-605].
 - → They showed that a stripline-type BPM with four pickups could be utilized as a nonintercepting emittance monitor.
- ▲ Also our previous work using similar stripline-type BPMs [*Jpn.J.App*. *Phys.* 40 (2001), pp.890-897] demonstrated that the higher-order (second- and third-order) moments of an electron beam were directly measured depending upon the transverse beam sizes.

Tsuyoshi Suwada /KEKB Injector Linac

Beam Energy-Spread Monitor with Eight Stripline-Type Electrodes

Tsuyoshi Suwada /KEKB Injector Linac

Multi-Stripline Energy Spread Monitor: Mechanical design parameters

(a)			TABLE I: Mechanical design param	neters of the BESM.
	H	/	Mechanical parameter	
		α	Innner radius B1 (mm)	20.6
			Outer raidus R_2 (mm)	23.4
	\dot{R}_2	Fille	Electrode angular width α (deg)	15
		Ţ	Electrode thickness $t (mm)$	1.5
	R_1		Electrode length l (mm)	132.5
		1 sol	Total length L (mm)	283
			Stripline electrodes	
	A B			
		<u></u>		
			- E	
				-
	Tauwashi Suwada	8th VEVD	A ag Day Committe Eab	1
	/VEVD List L	OUI KEKD	Acc. Kev. Commute, Feb.	4
	/KEKB Injector Linac		10-11, 2003	

Multipole Analysis of the Electromagnetic Field Generated by a Charged Beam: Beam-Induced Electric-Field Lines

Tsuyoshi Suwada /KEKB Injector Linac

Multipole Analysis of the Electromagnetic Field Generated by a Charged Beam: Wall current formula and its multipole expansion

▲ For a conducting round duct, the image charge density by a line charge is formulated by,

$$j(r,\phi,R,\theta) = \frac{I(r,\phi)}{2\pi R} \frac{R^2 - r^2}{R^2 + r^2 - 2rR\cos(\theta - \phi)},$$

• Expanding the image charge density in a power series of r/R,

$$j(r,\phi,R,\theta) = \frac{I(r,\phi)}{2\pi R} \left[1 + 2\sum_{n=1}^{\infty} \left(\frac{r}{R}\right)^n \cos n(\theta - \phi) \right].$$

Tsuyoshi Suwada /KEKB Injector Linac

Multipole Analysis of the Electromagnetic Field Generated by a Charged Beam: Wall current formula and its multipole expansion(cont'd)

Assuming the transverse *r*-distribution $\rho(r)$ of a traveling charged beam, the total image charge *J* is formulated by,

$$J(R,\theta) = \int_{0}^{R} \int_{0}^{2\pi} j(r,\phi,R,\theta)\rho(r) r dr d\phi.$$

 \checkmark It is easily expanded by the power series,

$$J(R,\theta) \approx \frac{I_b}{2\pi R} \left\{ 1 + \frac{2}{R} \left[\langle x \rangle \cos\theta + \langle y \rangle \sin\theta \right] \right.$$
$$\left. + \frac{2}{R^2} \left[\left(\langle x^2 \rangle - \langle y^2 \rangle + \langle x \rangle^2 - \langle y \rangle^2 \right) \cos 2\theta + 2 \left(\langle xy \rangle + \langle x \rangle \langle y \rangle \right) \sin 2\theta \right] \right.$$
$$\left. + \text{higher orders} \right\}.$$

Tsuyoshi Suwada /KEKB Injector Linac

Multipole Analysis of the Electromagnetic Field Generated by a Charged Beam: Wall current formula and its multipole expansion(cont'd)

 The multipole moments are defined for the 1st-order moment,

$$\langle x \rangle = \int x j(x, y) \rho(x, y) dx dy, \ \langle y \rangle = \int y j(x, y) \rho(x, y) dx dy,$$

, for the 2nd-order moment,

$$\langle x^2 \rangle = \int x^2 j(x,y) \rho(x,y) dx dy, \ \langle y^2 \rangle = \int y^2 j(x,y) \rho(x,y) dx dy,$$

and for the xy coupling term,

$$\langle xy \rangle = \int xyj(x,y) \rho(x,y) dxdy.$$

Tsuyoshi Suwada
/KEKB Injector Linac8th KEKB Acc. Rev. Committe, Feb.
10-11, 20038

Multipole Analysis of the Electromagnetic Field Generated by a Charged Beam: Wall current formula and its multipole expansion(cont'd)

Assuming a gaussian function for the transverse charge distribution, the total image charge density is formulated by,

$$J(R,\theta) = \frac{I_b}{2\pi\sigma_x \sigma_y} \iint \frac{j(r,\phi,R,\theta)}{I(r,\phi)} \exp\left[\frac{-(x-x_0)^2}{2\sigma_x^2}\right] \exp\left[\frac{-(y-y_0)^2}{2\sigma_y^2}\right] dxdy,$$

$$J(R,\theta) \approx \frac{I_b}{2\pi R} \left\{ 1 + 2\left[\frac{x_0}{R}\cos\theta + \frac{y_0}{R}\sin\theta\right] + 2\left[\left(\frac{\sigma_x^2 - \sigma_y^2}{R^2} + \frac{x_0^2 - y_0^2}{R^2}\right)\cos 2\theta + 2\frac{x_0y_0}{R^2}\sin 2\theta\right] + 2\left[\frac{x_0}{R}\left(\frac{3(\sigma_x^2 - \sigma_y^2)}{R^2} + \frac{x_0^2 - 3y_0^2}{R^2}\right)\cos 3\theta + \frac{y_0}{R}\left(\frac{3(\sigma_x^2 - \sigma_y^2)}{R^2} + \frac{3x_0^2 - y_0^2}{R^2}\right)\sin 3\theta\right] + \text{higher orders}\right\}$$

+ inglier orders,

8th KEKB Acc. Rev. Committe, Feb.

Tsuyoshi Suwada /KEKB Injector Linac

10-11, 2003

Multipole Analysis of 8-Electrode BESM

The multipole moments are defined

Tsuy /KE • for the 1st-order (dipole) moments,

$$J_{dx} = \frac{\langle x \rangle}{R} = \int_{0}^{2\pi} J(R,\theta) \cos\theta d\theta \int_{0}^{2\pi} J(R,\theta) d\theta \cong \frac{\sum_{i=1}^{8} V_i \cos\theta}{\sum_{i=1}^{8} V_i},$$
$$J_{dy} = \frac{\langle y \rangle}{R} = \int_{0}^{2\pi} J(R,\theta) \sin\theta d\theta \int_{0}^{2\pi} J(R,\theta) d\theta \cong \frac{\sum_{i=1}^{8} V_i \sin\theta}{\sum_{i=1}^{8} V_i},$$

• and for the 2nd-order (quadrupole and skew) moments,

$$J_{q} = \frac{1}{R} (\langle x^{2} \rangle - \langle y^{2} \rangle + \langle x \rangle^{2} - \langle y \rangle^{2}) = \int_{0}^{2\pi} J(R,\theta) \cos 2\theta d\theta \int_{0}^{2\pi} J(R,\theta) d\theta \cong \frac{\sum_{i=1}^{8} V_{i} \cos 2\theta}{\sum_{i=1}^{8} V_{i}},$$

$$J_{s} = \frac{1}{R^{2}} (\langle xy \rangle + \langle x \rangle \langle y \rangle) = \int_{0}^{2\pi} J(R,\theta) \sin 2\theta d\theta \int_{0}^{2\pi} J(R,\theta) d\theta \cong \frac{\sum_{i=1}^{8} V_{i} \sin 2\theta}{\sum_{i=1}^{8} V_{i}},$$

$$J_{s} = \frac{1}{R^{2}} (\langle xy \rangle + \langle x \rangle \langle y \rangle) = \int_{0}^{2\pi} J(R,\theta) \sin 2\theta d\theta \int_{0}^{2\pi} J(R,\theta) d\theta \cong \frac{\sum_{i=1}^{8} V_{i} \sin 2\theta}{\sum_{i=1}^{8} V_{i}},$$

$$J_{s} = \frac{1}{R^{2}} (\langle xy \rangle + \langle x \rangle \langle y \rangle) = \int_{0}^{2\pi} J(R,\theta) \sin 2\theta d\theta \int_{0}^{2\pi} J(R,\theta) d\theta \cong \frac{\sum_{i=1}^{8} V_{i} \sin 2\theta}{\sum_{i=1}^{8} V_{i}},$$

$$J_{s} = \frac{1}{R^{2}} (\langle xy \rangle + \langle x \rangle \langle y \rangle) = \int_{0}^{2\pi} J(R,\theta) \sin 2\theta d\theta \int_{0}^{2\pi} J(R,\theta) d\theta \cong \frac{\sum_{i=1}^{8} V_{i} \sin 2\theta}{\sum_{i=1}^{8} V_{i}},$$

$$J_{s} = \frac{1}{R^{2}} (\langle xy \rangle + \langle x \rangle \langle y \rangle) = \int_{0}^{2\pi} J(R,\theta) \sin 2\theta d\theta \int_{0}^{2\pi} J(R,\theta) d\theta \cong \frac{1}{R^{2}} \int_{0}^{2\pi} V_{i}$$

$$J_{s} = \frac{1}{R^{2}} (\langle xy \rangle + \langle x \rangle \langle y \rangle) = \int_{0}^{2\pi} J(R,\theta) \sin 2\theta d\theta \int_{0}^{2\pi} J(R,\theta) d\theta \cong \frac{1}{R^{2}} \int_{0}^{2\pi} V_{i}$$

$$J_{s} = \frac{1}{R^{2}} (\langle xy \rangle + \langle x \rangle \langle y \rangle) = \int_{0}^{2\pi} J(R,\theta) \sin 2\theta d\theta \int_{0}^{2\pi} J(R,\theta) d\theta \cong \frac{1}{R^{2}} \int_{0}^{2\pi} V_{i}$$

$$J_{s} = \frac{1}{R^{2}} (\langle xy \rangle + \langle x \rangle \langle y \rangle) = \int_{0}^{2\pi} J(R,\theta) \sin 2\theta d\theta \int_{0}^{2\pi} J(R,\theta) d\theta \cong \frac{1}{R^{2}} \int_{0}^{2\pi} V_{i}$$

$$J_{s} = \frac{1}{R^{2}} (\langle xy \rangle + \langle x \rangle \langle y \rangle) = \int_{0}^{2\pi} J(R,\theta) \sin 2\theta d\theta \int_{0}^{2\pi} J(R,\theta) d\theta \cong \frac{1}{R^{2}} \int_{0}^{2\pi} V_{i}$$

$$J_{s} = \frac{1}{R^{2}} (\langle xy \rangle + \langle x \rangle \langle y \rangle) = \int_{0}^{2\pi} J(R,\theta) \sin 2\theta d\theta \int_{0}^{2\pi} J(R,\theta) d\theta \cong \frac{1}{R^{2}} \int_{0}^{2\pi} J(R,\theta) d\theta \otimes \frac{1}{R^{2}} \int_{0}^{2\pi} J(R,\theta) \partial\theta \otimes$$

Multipole Analysis of 8-Electrode BESM (cont'd)

 Using the 2nd-order (quadrupole and skew) moments, the skew angle (x-y coupling) of the beam is formulated by

$$\theta_{skew} = J_s / 2J_q,$$

 and the beam energy spread is also formulated using the optics parameters and transverse emittances by

$$\langle x^2 \rangle - \langle y^2 \rangle \cong \beta_x \varepsilon_x + \left(\eta_x \frac{\Delta E}{E}\right)^2 - \beta_y \varepsilon_y + g.$$

where g is the offset due to the gain imbalance and the geometrical errors of the pickups.

Tsuyoshi Suwada /KEKB Injector Linac

Multi-Stripline Energy Spread Monitor: Charge Simulation Method

Tsuyoshi Suwada /KEKB Injector Linac

Multi-Stripline Energy Spread Monitor: J_{quad} -Sensitivity Calculation

Beam Test at the 180-degree J-arc section of the injector linac

Beam Test:Experiment and beam condition

1. Beam Conditions:

single bunch (KEKB) electron and high-current e-/e+ production beam (bunch width=12ps, bunch charge=0.9 and 8nC, repetition rate=25Hz)

beam energies ($E_b=1.7$ GeV) at the linac J-arc.

- 2. Second-order moments (quadrupole and skew moments) were measured by the BESM depending upon the rf phase of the booster klystron and the transverse beam positions.
- 3. Beam-size calibration was performed by a fluorescent screen monitor with a high-resolution image processing system.
- 4. Data-acquisition system of the BESM comprises a signal-digitizing system of a fast oscilloscope(LeCroy WavePro 950) with a sampling rate of 8-GS/s (BW=1GHz) and a PC/Linux-based computer with a Pentium IV microprocessor at 2.2GHz.

Tsuyoshi Suwada /KEKB Injector Linac

Experimental Results: phase=0deg (0.9-nC e- beam)

Tsuyoshi Suwada /KEKB Injector Linac

Experimental Results: phase=+3deg (0.9-nC e- beam)

Tsuyoshi Suwada /KEKB Injector Linac

Experimental Results: Beam-size measurement by the screen monitor system depending on the rf phase (0.9-nC e- beam)

Tsuyoshi Suwada /KEKB Injector Linac

Experimental Results: Variations of the horizontal and vertical beam-position dependence of J_{quad}

Tsuyoshi Suwada /KEKB Injector Linac

Experimental Results: Variations of J_{quad} and the rf phase resolution depending on the rf phase(0.9 and 8-nC e- beams)

Tsuyoshi Suwada /KEKB Injector Linac

Experimental Results: Variations of the skew angles depending upon the rf phase(0.9 and 8-nC e- beams)

- The obtained skew angles in average are
 - 21 and 20 mrad for the 0.9- and 8-nC e- beam over the measured region of the rf phase.

Tsuyoshi Suwada /KEKB Injector Linac 8th KEKB Acc. Rev. Committe, Feb. 10-11, 2003

21

Experimental Results: Variations of the beam energy spread depending upon the rf phase

- The obtained beam energy spreads were
 - 0.150±0.007% for the 0.9-nC e-,
 - and 0.264±0.004% for the 8-nC e-/e+ production at the rf phase of the energy-spread minimum

The resolution of the measurement is on the order of 10⁻³ depending upon the beam charge and the rf phase.

Tsuyoshi Suwada /KEKB Injector Linac

Conclusions

- Result of the beam-size measurement by the BESM is consistent well with that obtained by the fluorescent screen monitor system, where the 2nd-order moments need to be corrected with the transverse beam positions.
- σ RF phase resolutions were
 - less than 1 deg. for the high-current primarly electron(8-nC) beam, and less than 1 deg. over the region of ±1 deg. apart from the rf phase at the energy-spread minimum.
- σ Beam energy spreads were
 - 0.150±0.007% for the 0.9-nC electron beam,
 - and 0.264±0.004% for the 8-nC e- beam, and the resolution is on the order of 10⁻³ depending upon the beam charge and the rf phase.
- σ Skew angles of the electron beam were
 - 21 and 20 mrad in average over the measured region of the rf phase for the 0.9and 8-nC electron beam, respectively.

