R&D Activities for ARES Upgrade

Tetsuo Abe

for KEKB-RF/ARES-cavity group

High Energy Accelerator Research Organization (KEK)

<Outline>

- 1. R&D programs for SuperKEKB
- 2. L-band HOM-load test stand
- 3. Input couplers with TiN coating
- 4. New copper electroplating for S-cav
- 5. Summary

KEKB Review @KEK 2005.02.22

Accelerator Resonantly-coupled with Energy Storage

3-cavity system stabilized with the π /2-mode operation

2005.02.22 KEKB Review

R&D Activities for ARES Upgrade by T. Abe (KEK)

1

Accelerator Resonantly-coupled with Energy Storage

3-cavity system stabilized with the π /2-mode operation

Upgrade Items toward

Measures against

R&D Programs 2004(JFY)

[1] Construction of a new L-band HOM-load test stand

- → Using 1.25GHz klystron (1.2MW, CW)
- \rightarrow The 1st stage just finished

[2] Input couplers with TiN coating

- \rightarrow Against multipactoring in the coaxial line
- → TiN(Titanium Nitride) has low secondary-electron yields and is good for vacuum.
- \rightarrow Two couplers have been completed.
- → Being tested in the upgraded coupler test stand up to 800kW.
- [3] New highly-pure copper electroplating for S-cav
 - \rightarrow The old facility has been retired.
 - \rightarrow Reusing a facility being used for J-PARC.

[1] L-band HOM Test Stand

SiC Absorbers

Max. power which can be supplied by the old L-band klystron.

HOM Extrapolation for Super-KEKB LER

Winged chamber loaded with SiC Absorbers

(used in the movable-mask sections)

Y. Suetsugu et al., "Development of Winged HOM Damper for Movable Mask in KEKB", Proc. PAC2003.

\rightarrow Can be a prototype.

Directly water-cooled SiC bullet

New A-cav Design with Winged Chambers

Construction of New Test Stand for the HOM-load Upgrade

Reusing an L-band klystron, which is capable of 1.2 MW CW power (freq. = 1.25 GHz).

Operating conditions (HV & cooling system etc.) are going to be regulated for our purpose.

The 1st stage of the construction has been just finished.

The 1st RF Power Comes!

 \rightarrow Tuning to deliver more RF power up to 100 kW

2005.02.22 KEKB Review

R&D Activities for ARES Upgrade by T. Abe (KEK)

[2] Input Couplers with TiN Coating

The problem is the *multipactoring* in the coaxial line.

Simulation Study

- Solving eq. of motion with the Runge-Kutta method
- Assuming the SEY of conditioned copper
 - Count number of collisions.

On Which Side?

 \rightarrow

Almost single-side multipactoring on the outer conductor

2005.02.22 KEKB Review

Coating Area

Setup of the TiN Coating (DC Sputtering)

Studies on

Two input couplers have been TiN-coated with the final condition.

(taken on 2004.11.10)

After Coating

Fabrication

Leak test

Tested in the upgrade coupler test stand

2005.02.22 KEKB Review

R&D Activities for ARES Upgrade by T. Abe (KEK)

Old Setup of the Coupler Test Stand

Coupler Test Stand Upgraded for Higher Power Capability: <u>400→800kW</u>

Another characteristic:

The coupling-loop angles of the input and output couplers

are set to be the same.

[3] New Copper Electroplating for S-cav

S-cav is made from Iron with copper electroplating.

- Present S-cav --- electroplating in a pyrophosphate bath
 - With brightener \rightarrow little defect on the surface
 - The facility has been retired.

S-cav for SuperKEKB --- new electroplating in an acid sulfate bath

performed in the *periodic reverse (PR) process*

H. Ino, et. al, "Advanced copper lining for accelerator components", Proc. of LAC2000, Monterey, CALIFORNIA, 1015 (2000)

• Without brightener \rightarrow high purity, high electric conductivity (102%IACS),

but possible defects on the surface

Using the facility being used for J-PARC

Ex. DTL tank

R&D Activities for ARES Upgrade by T. Abe (KEK)

Difference between J-PARC and SuperKEKB

Pillbox Test Cavity

Diameter: 451.2mm Height: 260.0mm

(After copper electroplating)

Theoretical <u>Cal</u>culation of Q₀ (=Q₀(cal))

IACS

- International <u>Annealed</u> <u>Copper</u> <u>Standard</u>
- 100%IACS electric conductivity: 1/1.72E-8Ωm
- The electric conductivity of the highest-class oxygenfree copper: <u>102%IACS</u>

Cf. Electroplating in an acid sulfate bath w/o brightener: <u>102%IACS</u>

After Trial and Error...

Copper Electroplating in an acid sulfate bath w/o brightener (PR process)

2005.02.22 KEKB Review

34

After Trial and Error...

Copper Electroplating in an acid sulfate bath w/o brightener (PR process)

Barrel

After Trial and Error...

Copper Electroplating in an acid sulfate bath w/o brightener (PR process)

Barrel

Endcap

2005.02.22 KEKB Review

R&D Activities for ARES Upgrade by T. Abe (KEK)

36

Thickness Measurement

Setup of the Q₀ Measurement

Setup (close view)

2005.02.22 KEKB Review

R&D Activities for ARES Upgrade by T. Abe (KEK)

Results of the Qo Measurements

Results of the Qo Measurements

Results of the Qo Measurements

Next Step: Vacuum Test

- The test cavity has been fabricated.
- The electroplating is ongoing.
- A vacuum test will be done next month.

Endcap

Barrel

2005.02.22 KEKB Review

R&D Activities for ARES Upgrade by T. Abe (KEK)

Summary

ARES R&D programs are ongoing well.

A new L-band test stand has been constructed

- \rightarrow For the HOM-load upgrade.
- \rightarrow The 1st stage has been finished.
- \rightarrow To be tuned for supplying high powers.

Input couplers with TiN coating

- \rightarrow Against multipactoring in the coaxial line.
- \rightarrow Two TiN-coated couplers have been completed.
- \rightarrow Being tested in the upgraded coupler test stand up to 800kW(CW).

New highly-pure copper electroplating for S-cav

- \rightarrow On the slightly different condition from J-PARC.
- \rightarrow The electric performance is estimated to be excellent.
- \rightarrow A vacuum test to be done next month.