RF control for crab cavity

K. Akai (KEK) Feb. 21, 2005 KEKB review committee

Beam-loading on crab cavity

2.2 Vector relations

In the following, a positron beam $(q > 0, I_b > 0)$ is considered. (An electron beam can be treated similarly.) Figure 1

shows a vector relation for the crabbing mode. In this figure, $V_{\perp g}$ is the generator voltage, $V_{\perp gr}$ the generator voltage on resonance, α_L the angle between $V_{\perp gr}$ and $V_{\perp c}$, and ϕ_c the angle of $V_{\perp c}$ with respect to the beam. It is similar to that for the accelerating mode, except for the beam-induced voltage, $V_{\perp br}$ and $V_{\perp b}$. The phase of $V_{\perp br}$ with respect to the bunch phase is 90 or 270 degrees, according to $\Delta x < 0$ or $\Delta x > 0$ (180 degrees for the accelerating mode). Furthermore, the amplitude of $V_{\perp br}$ is dependent on Δx .

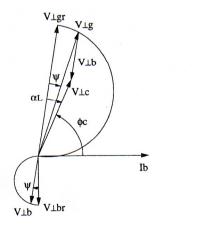
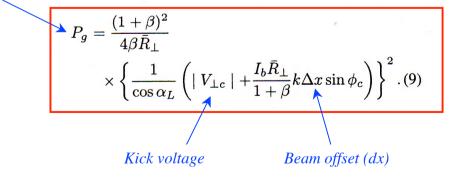


Figure 1: Vector relation for the crabbing mode ($\Delta x > 0$).

K. Akai et al, EPAC96, p.2118.

From the vector relation we obtain

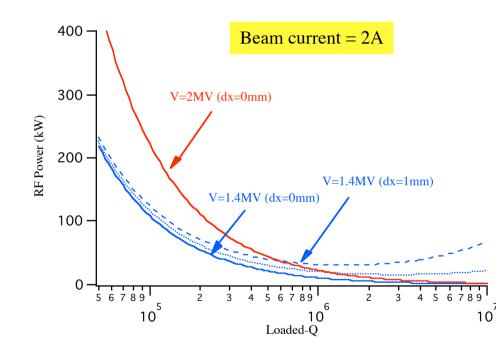
$$\tan \alpha_L = \frac{\tan \psi - Y \cos \phi_c}{1 + Y \sin \phi_c}, \qquad (6)$$


$$|V_{\perp gr}| \cos \alpha_L = |V_{\perp c}| (1 + Y \sin \phi_c), \quad (7)$$

where $Y \equiv \pm |V_{\perp br}/V_{\perp c}|$ (positive sign for $\Delta x > 0$ and negative sign for $\Delta x < 0$).

Since $|V_{\perp gr}|$ is related to the input power (P_g) as

$$V_{\perp gr} \mid = \frac{2\sqrt{\beta}}{1+\beta} \sqrt{\bar{R}_{\perp} P_g}, \qquad (8)$$


the required power to maintain the crabbing voltage is obtained from Eqs. 4, 7 and 8 as

RF Control for Crab Cavity (K. Akai)

RF Power

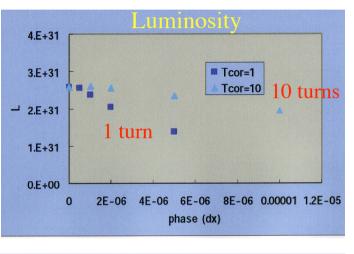
Required power vs Loaded-Q

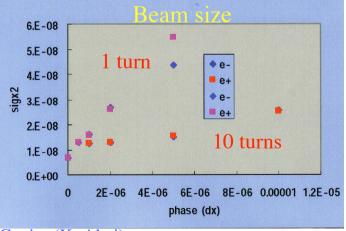
- Should be taken into account:
 - Available RF power
 - Not to be too sensitive to beam orbit change
 - Higher voltage than normal operation can be applied for conditioning cavity.
- $Q_L = 1 \sim 3 \times 10^5$ seems a good choice.
 - RF power of 200 kW is sufficient.
 - Orbit change by 0.5mm is tolerable.

Tolerance_Timing (RF phase)

- Timing error (RF phase error) gives rise to horizontal displacement at the IP. $c\Delta t \le A\sigma_r^*/\phi_{cross}$
 - Here, ϕ_{cross} is the half crossing angle.
 - A is the ratio of allowed offset to horizontal beam size, σ_x^* . A. The value A should be determined from beam-beam view point.

	KEKB	Super-KEKB	LC	
σ_x^*	100µm	70µm	0.24µm	
A (assumed)	0.05?	~0.05?	~0.2?	
φ _{cross}	+/- 11mrad	+/- 15mrad	+/- 3.5mrad	
Δt	1.5 ps	0.8 ps	0.05 ps	
0.27 deg (509MHz)				


RF Control for Crab Cavity (K. Akai)


Please delete "A"

Effect on the beam-beam performance of RF phase jitter

- Luminosity and beam size as functions of dx.
- Correlation time of the jitter, 1 or 10 turns, is important.
 - For correlation time of 10 turns,5 microns is allowed.
 - For correlation time of 1 turn, tolerance is only 1 micron.

Simulation by Ohmi and Tawada

Source of phase error and cure

- Phase drift due to temperature change, etc.
 - Slow. If the error is measured, it can be easily compensated by feedback control of a phase shifter.
 - CCC (continuous closed orbit correction system) can show single kick caused by crab cavity.
- Other possible errors
 - Since $Q_L \sim 2x 10^5$ and h=5120, the correlation time for most of possible errors will be larger than 10 turns. Then, a displacement of 5 microns is allowed, corresponding to a phase error of 0.27 degree. This is feasible with conventional control system.

Transient to abort gap

Depends on operating parameters.

- accerating Vc and Q_L , beam current, gap length.
- Mostly compensated.
 - Same direction in both rings.
- How about residual?
 - Although modulation period is 1 turn, correlation time for each bunch is NOT 1 turn, but determined by Q_L of accelerating cavities.
 - Then +/- 7 microns is not disastrous. However, still marginal for the 10 turn correlation.
 - Consequently, variable range for current ratio e+/e- will be limitted to reduce the residual.

Table 2: Bunch position shift due to 5% gap in both rings.

K. Akai et al, EPAC98, p.1749.

	LER	HER	
Current [A]	2.6	1.1	
Phase modulation (p-p) [deg]	3.5	2.7	
Δ z (p-p) [mm]	5.7	4.4	
Δ x at CP (p-p) [mm]	0.063	0.049	
Δ z (relative) [†] [mm]	± 0.3		
Δ x (relative) ^{††} [mm]	± 0.007		

$†$
 $(\Delta z_{
m her} - \Delta z_{
m ler})/4$ and †† $(\Delta x_{
m her} - \Delta x_{
m ler})/2$

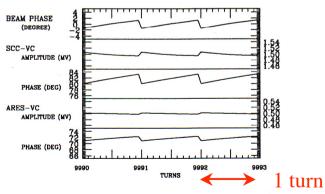
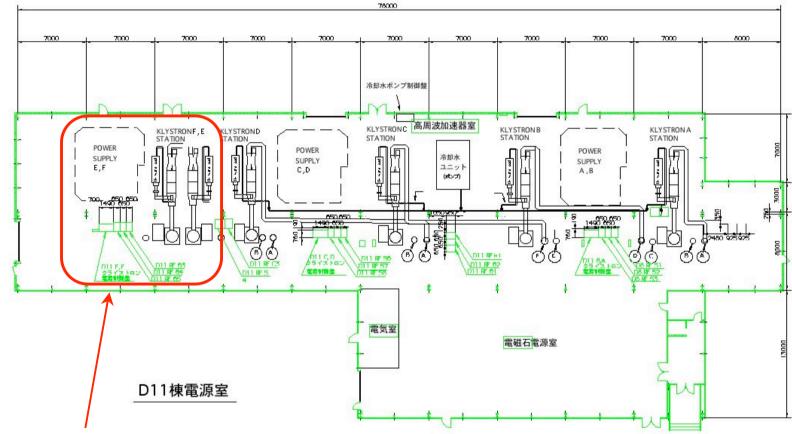
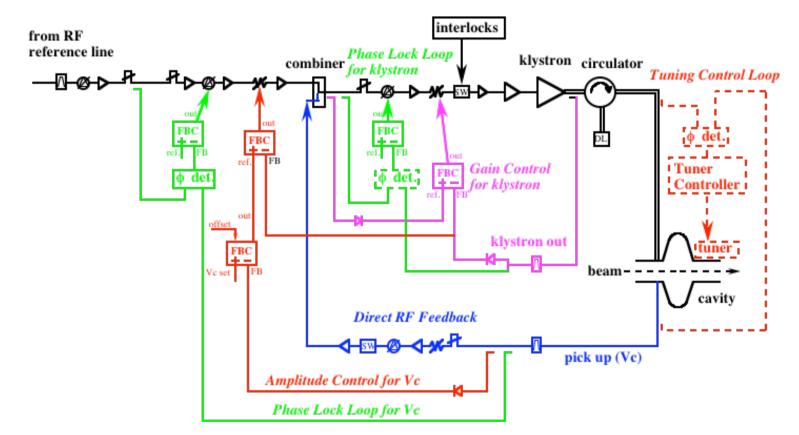
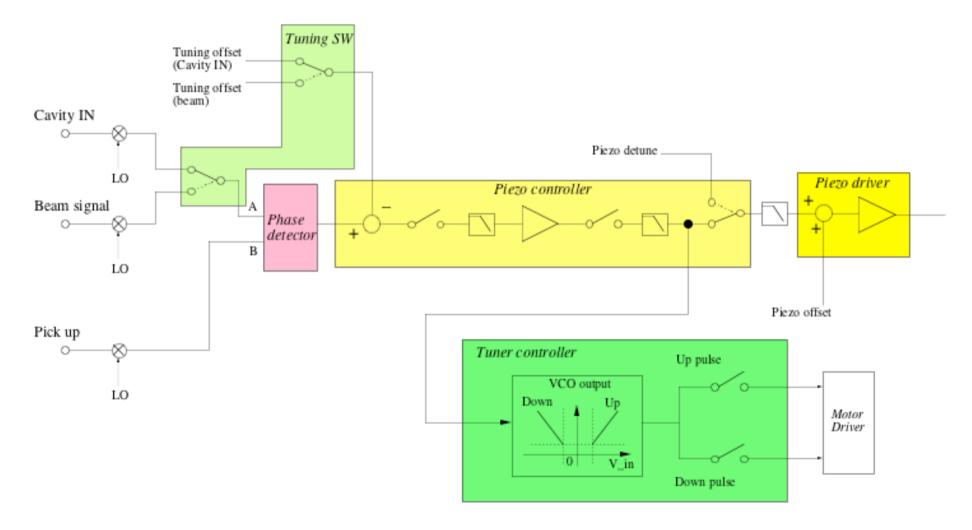



Figure 3: Transient response of the hybrid system in HER to a 5% gap.

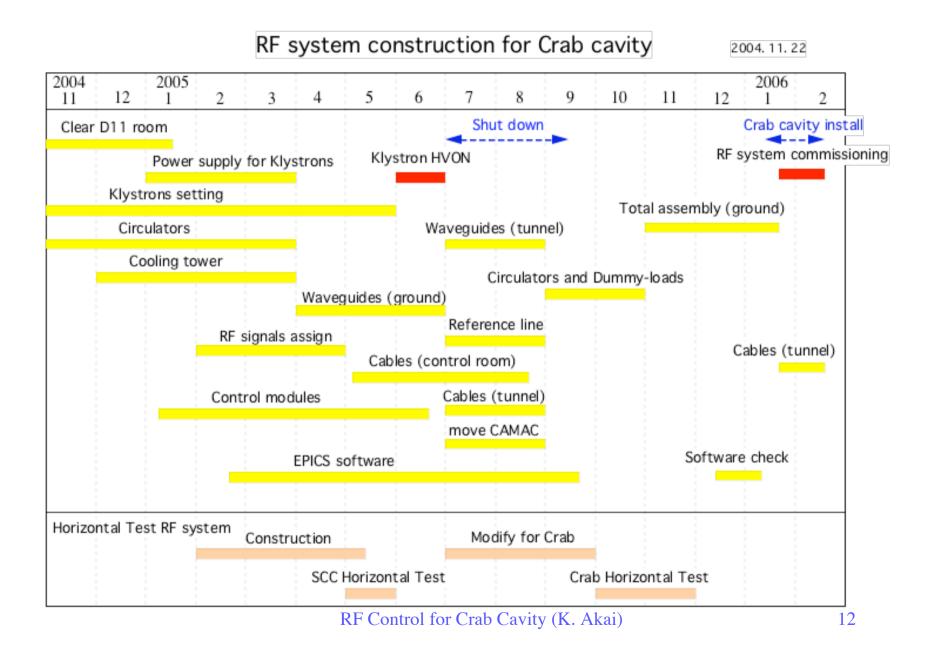
RF stations for crab cavities


- Two RF units are being constructed in D11.
 - D11-E is for the LER crab cavity.
 - D11-F is for HER, although the cavity will be located in D10 tunnel.
 - Required power is 200 kW, much lower than existing stations for accelerating cavities.
- High power components with reduced cost.
 - Two reused klystrons have been conditioned up to 600 kW, enough for crab cavities.
 - A spare power supply for one klystron was moved from D2 and will be modified to drive two klystrons.
 - Circulators, dummy loads, and waveguides are being fabricated.
- Control system
 - Mostly similar to that for the SC accelerating cavities.
 - Required accuracy for phase control is about 0.2 degree.

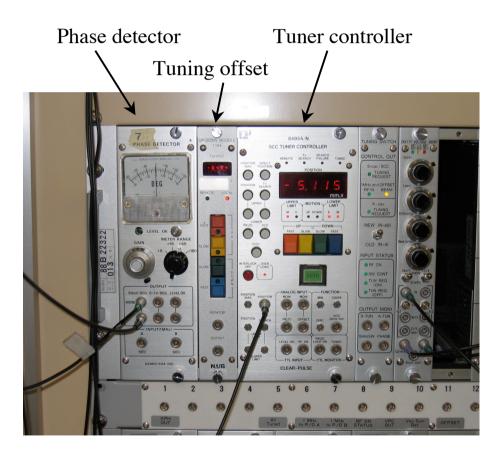
Layout of D11 klystron gallery


Two RF high power stations are being built for crab cavities.

Low-level RF for KEKB Superconducting cavity

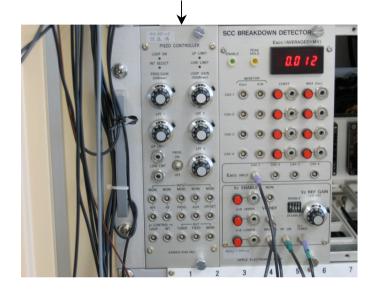

RF system for crab cavity will be similar.

Block diagram of tuning control system for KEKB-SCC



RF Control for Crab Cavity (K. Akai)

11



Tuner contoller

- Auto up/down based on phase detector signal.
- Manual up/down
- Stop by mechanical switch, electrical limit, or piezo overload
- Display tuner position
- F0 search

Piezo controller and Piezo driver

- Piezo controller:
 - Gain 60dB max
 - LPF 3 stages

- Piezo driver
 - Gain = 200
 - Output 0∼1600V
 - Current 100mA max