KEKB ACCELERATOR REVIEW COMMITTEE FEB 22 2005

IR Overview

Choice of machine parameters

Design parameters of KEKB and SuperKEKB

	KEKB	(design)	SuperKEKB			
	LER	HER	LER	HER		
I [A]	2.6	1.1	9.4	4.1		
$\beta_y^*[mm]$	10	10	3	3		
ξ _y	0.052	0.052	0.14	0.14		
L [/cm ² /sec]	1 x	10 ³⁴	2.5 x	10 ³⁵		
σ_{l} [mm]	5	5	3	3		

IR basic parameters

	KEKB	(design)	SuperKEKB			
	LER	HER	LER	HER		
$\beta_y^*[mm]$	10	10	3	3		
$\beta_x^*[cm]$	33	33	20	20		
$\epsilon_{x}[nm]$	18	18	24 24			
φ [mrad]	1	1	1	5		

 β_{y}^{*} : basic assumption of SuperKEKB design β_{x}^{*} , ε_{x} : from beam-beam simulations ϕ : assumption for IR design

Crossing angle (ϕ **)**

	±11mrad	± 15 mrad
Physical aperture of IR magnets	No solution	tight
Power of SR from QCS magnets	lower	higher
Required voltage of crab cavities	lower	higher
Parasitic collision effects	Not yet studied	Talk by Tawada

Issues of IR Design

Issues	Causes	Measures
Dynamic aperture	Lower beta's at IP.	Place QCS magnets. closer to IP. Damping ring.
Physical aperture	Lower beta's at IP.	Damping ring.
	Energy switch.	Larger crossing angle.
Heating and mechanical breakdown of IR components	Higher beam currents. Higher power of SR from QCS magnets. Shorter bunch length (HOM).	Under study.
Detector beam background	Higher power and critical energy of SR from QCS magnets. Higher beam currents. QCS closer to the IP. Higher ξ_y and shorter bunch length.	Under study by Belle Group.

Design Work Overview

IR Design Works

- We have to concurrently pursue the following design works until we find a consistent set of solutions.
 - □ Choice of machine parameters
 - Beam-beam simulations (Talk by Tawada)
 - IR Magnet design (Talks by Ohuchi)
 - Optics and dynamic aperture (Talk by Ohnishi)
 - IR Vacuum design (Talk by Kanazawa)
 - Detector beam background (Talk by Tajima)

QCS Magnets Design (Ohuchi)

Design principles

□ Move QCS's closer to the IP.

Higher field gradient.

 $\hfill\square$ Detector solenoid field is cancelled in each side of the IP.

Parameters	SuperKEKB	KEKB	Units
Distance from IP to QCSL	0.969	1.60	m
Distance from IP to QCSR	1.163	1.92	m
Effective length of QCSL	0.3982	0.483	m
Effective length of QCSR	0.333	0.385	m
Field Gradient of QCSL	35.4	21.66	T/m
Field Gradient of QCSR	37.2	21.73	T/m

Place QCS magnets closer to IP

The boundary between KEKB and Belle is the same as that of present KEKB. ESL and ESR will be divided into two parts (to reduce E.M. force). QCSL (QCSR) will be overlaid with (the one part of) ESL(ESR).

IR magnet layout

Required information for further IR magnet designs

- Required ring acceptance
 - Determined by the beam injection requirement.
 - Every magnet should keep the required acceptance.
 - Required ring acceptance is also needed from the viewpoints of estimation of dynamic aperture.
- Fan of SR from the QCS magnets
 - Every IR magnet should be designed to avoid irradiation by the SR.
 - SR fan is also needed for the vacuum chamber design and the estimation of the detector background.

Required Ring Acceptance

	LER	HER
e-/e+	e-	e+
Energy [GeV]	3.5	8.0
Damping Ring	No	Yes
A _x [μm]	2.6	1.5
A _y [μm]	0.18	0.025

Energy switch is assumed from the beginning of SuperKEKB operation. A damping ring will be needed for the e+ beam.

SuperKEKB Construction Schedule (2005.1.18)

F	iscal Yea	r	20	006	20	07	2008 2009 2010								2011												
Budge	et							SuperKEKB Main Budget																			
KEKB	Ring				KEKE	3 Ope	ration							Sł	nutdov	wn			SuperKE				KB				
Damp	ing Ring							Cor	nstruc	tion			Ins	stallat	ion		Сог	nmiss	iong		С	on					
Linac	Upgrade																										
	# of Uni	ts		2		2		2				14				14				14	e+ 8GeV		V				
RF U	pgrade																										
	C	D1																			2 (C	rabs)	\rightarrow				
		02																			2 (Crabs)		\rightarrow				
)4	3 (6A)	-	\rightarrow		_	\rightarrow			_	→		\rightarrow				\rightarrow		14(14AH)		\rightarrow				
)5	3 (6A)	4 (6A)	\rightarrow			\rightarrow		\rightarrow				\rightarrow		10(2H+8L)		\rightarrow							
	C)7	5 (1	(A0	-	→	\rightarrow				\rightarrow		\rightarrow		\rightarrow		10 (1	0AL)	\rightarrow								
	C	8	5 (1	(A0	-	→	\rightarrow					→	→		→		\rightarrow		10 (10AL)		\rightarrow						
	C	010	4 (4S)	-	→		_	→			_	→			_	→		\rightarrow		\rightarrow		6(6	SH)	\rightarrow		
		D11	4 (4S)	-	→		_	→				→			_	→		\rightarrow		6(6	SH)	\rightarrow				
		DR															1(1A)				1(1A)				\rightarrow		\rightarrow
	Klystror	n fab.		5	(6			7			7			6		6			5		0					
Infras	tructure																										
Bulding			Cor	nstruc	tion																						
	Electric	ity						Construction																			
	cooling	water						Construction																			
Vacu	um Upgra	de						Construction, Installation																			

Ohnishi

Dynamic Aperture for Injected Beam

Estimated dynamic aperture of HER is marginal. Do we need a local chromaticity correction also In HER?

Synchro-betatron Resonance

Problem

- HER local chromaticity correction scheme is not compatible with installation of crab cavities in Tsukuba section.
- If we want to install crab cavities in Tsukuba, we can not adopt the local correction scheme in HER.
- We need to wait for the results of the experiment with the crab cavities in Nikko section next year.

Fan of SR

- Consideration of the particle distribution in the phase space
- Effects of dynamic- β and dynamic-emittance
 - These effects are very large with the horizontal tune very close to the half integer.
- We took $9\varepsilon_x (3 \sigma_x, 3\sigma_{x'})$ into consideration.

Enlargement of SR fan due to dynamic effects

	without dyn	amic effects	with dyna	mic effects		
Source point	QCSRE(Arc side) HER	QCSLE(Arc side) LER	QCSRE(Arc side) HER	QCSLE(Arc side) LER		
Observation point	Exit of QC1RE	Exit of QC1LE	Exit of QC1RE	Exit of QC1LE		
$\varepsilon_{x}[nm]$	2	24	58			
$\gamma_{x}^{*} (1/\beta_{x}^{*}) [/m]$	-	5	22.5			
Distance from a source point [m]	2.87	1.94	2.87	1.94		
Δx[mm] COD	5.2	5.5	5.2	5.5		
$\Delta x[mm] 3 \sigma_x, 3\sigma_{x'}$	5.1	5.4	17.7	18.3		
Δx[mm] Total	10.3	10.9	22.9	23.8		

 $\xi_{\rm x} = 0.1, \, v_{\rm x} = .510$

Power of SR from QCS Magnets

	QCSR	QCSL
Magnet length [m]	0.33	0.42
Δx [mm]	34.5	29.1
G [T/m]	37.2	35.4
B [T]	1.28	1.03
E _b [GeV]	8.0	3.5
I [A]	4.1	9.4
P [kW]	179 (27)	64.6 (10)

(): present KEKB Design

Vacuum system design issues (Kanazawa)

SR from QCS's

- □ How to handle the high power?
- How to suppress the SR background to Belle?
- HOM power
 - □ A few * (100kW) will be turned into heat in IR (Kanazawa).
 - How to deal with its power?
- More durable vacuum components?
- Denser vacuum pumps from reducing particle beam background?

Detector beam background issues (Tajima)

	Mechanism	Reason of severeness	
Particle loss	Radiative Bhabha	High Luminosity, QCS's closer to IP	
	Collision with residual gas	High currents	
	Touschek effect	Short bunch length, high ξ_y , smaller dynamic aperture	
SR	Emitted at QCS's	High current, larger ϕ_c , Higher field of QCS's	

Other works to be done

Other engineering issue

Mechanical support of the magnets

- Solution of spatial conflicts among components
- Design of IR special beam monitor system

Crossing angle (ϕ **)**

- QCS (defocusing quadrupole) magnets are placed closer to IP.
- β_x^* is smaller.
 - $\hfill\square$ The maximum value of $\beta_{\textbf{x}}$ around IP becomes very large.
 - Physical aperture will be an issue particularly in the horizontal direction.
 - To mitigate this problem, the crossing angle will be increased from ±11mrad to ±15mrad.

QC1 magnet design

- Severe physical aperture requirement
- Two options (-> Ohuchi and Tawada's talk)
 - Normal quadrupole
 - Superconducting
 - Normal quadrupole has higher priority.
 - The option of superconducting magnets is a backup.

Geometrical Relationship between SuperBelle and SuperKEKB

Critical energy of SR from QCS magnets

	QCSR	QCSL
Distance from IP to magnet center [mm]	1163.3	969.4
Δx [mm]	34.5	29.1
G [T/m]	37.2	35.4
E _b [GeV]	8.0	3.5
u _c [keV]	54.7(37.4)	8.40(5.95)

(): present KEKB