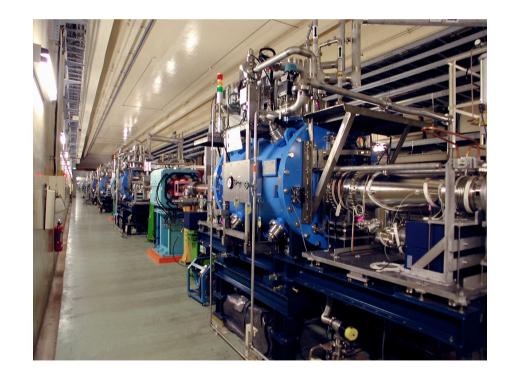
SCC upgrade ~ Superconducting Accelerating Cavity ~

KEKB-MAC2005

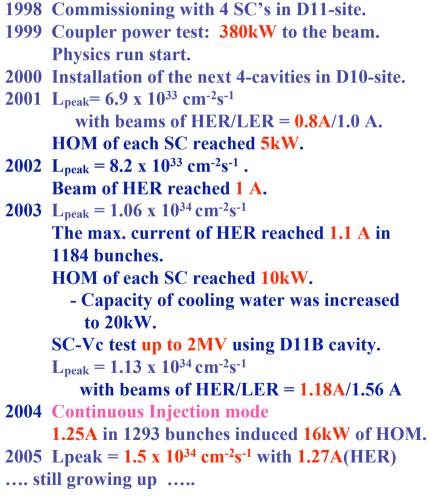
Feb. 22, 2005

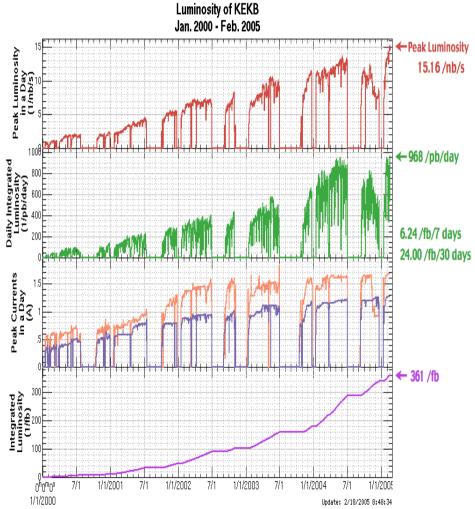
T. Furuya


KEKB-SCC

- The peak luminosity of KEKB has reached 150% of the design value.

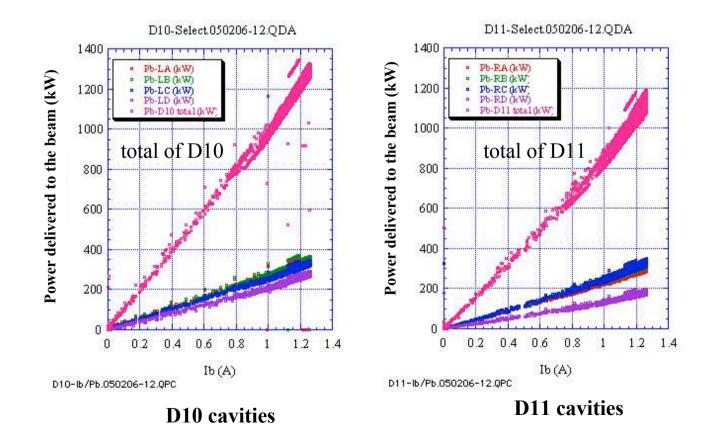
- The beam intensity of HER reached 115%.


Contents


- 1) Achievements of KEKB-SC
- 2) Activity for upgrading

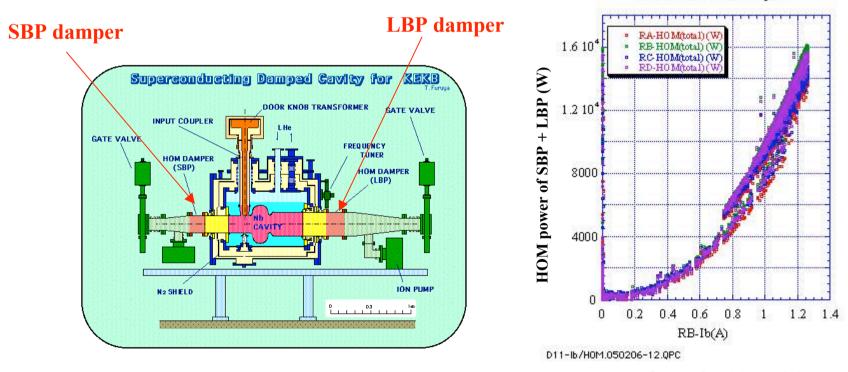
Achievements of KEKB-SC

Historical aspects



Achievements of KEKB-SC

RF power at 1.27 A


-RF power of 2.4 MW was transferred to the beam by 8 SC cavities.

KEKB-MAC2005 SCC Upgrade Achievements of KEKB-SC

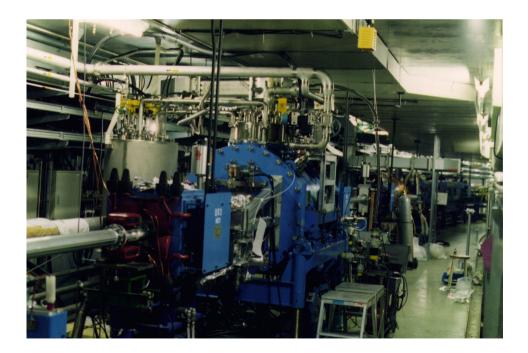
RF power absorbed by HOM dampers at 1.27 A

- A beam of 1.27 A in 1293 bunches induces the HOM of 14 - 16 kW for each module. (σ_z =7mm) - The ratio of SBP / LBP is 7 kW / 9 kW.

HOM of D11 cavities

SC-HOMH.050206-12.QDA

Achievements of KEKB-SC

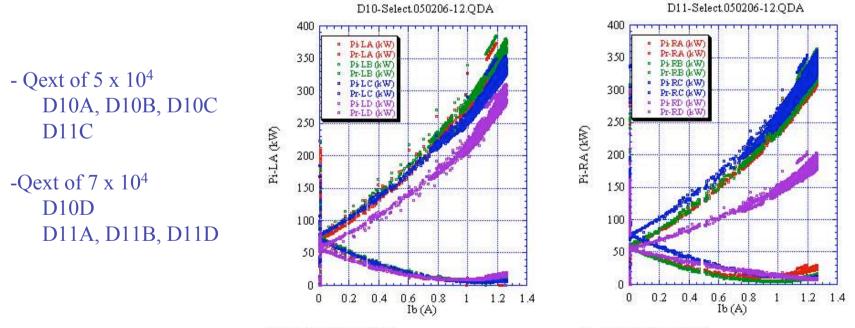

Summary of figures

	design	achieved
Number of SC cavities	8	4 at the commissioning 8 since Set. 2000
Beam intensity	1.1A in 5000 bunches	1.27 A in 1293 bunches
Bunch length	4 mm	6 - 7 mm
Max RF voltage w/o beam	-	> 2.5 MV/cavity (2 – 2.8 MV/cavity)
RF voltage with beam	1.5 MV/cavity	1.2 – 2 MV/cavity
Q-value	1 x 10 ⁹ at 2 MV	$0.5 - 2 \ge 10^9$ at 2 MV
RF power transferred to the beam	> 250 kW/cavity	300 - 350 kW/cavity 400 kW/cavity in max.
HOM power	5 kW at 1.1 A	14 - 16 kW at 1.27 A

Activity for upgrading

1. Spare module

- * Because of the increase of a beam current, the SC system has no margin of RF power.
- * A prototype module constructed for the beam test in 1996 was modified as a spare module of KEKB in the last summer.
- * The module will be cooled at a test stand soon.



Prototype module in TRISTAN AR.

Activity for upgrading

2. Input coupler

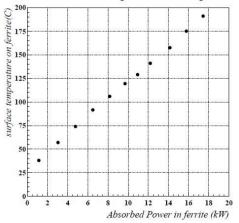
- * Required RF power in SuperKEKB is 460 kW/cavity.
- * Traveling wave of 500 kW was successfully supplied at a test stand in 2003.
- * To increase the coupling strength, the vacuum gasket of the outer conductor was replaced to thin one in the last summer shutdown.

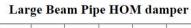
D10-lb/Pi,Pr.050206-12.QPC

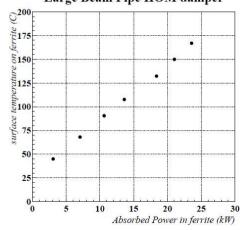
D11-lb/Pi,Pr.050206-12.QPC

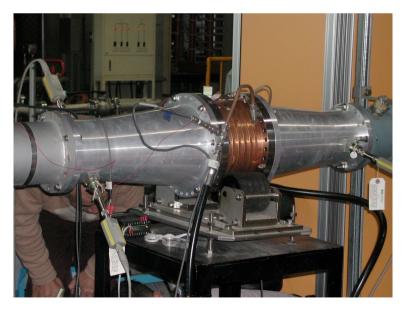
Activity for upgrading

3. Power test of a HOM damper

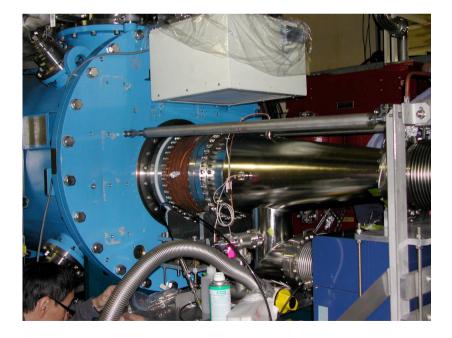

- * Power test was carried out to the spare dampers of SBP and LBP.
- * Absorbed power up to 18 kW for SBP damper and 25 kW for LBP damper did not damage the ferrite surface, which correspond to the HOM power at 2 A in 1300 bunches in HER.
- * The surface temperature reached near 200C.
- * Out gas rate should be measured as the next step.


* In SuperKEKB, the HOM of 60 kW has to be absorbed by a pair of the dampers.


To reduce the temperature rise of the surface,


the dampers with a thin ferrite cylinder (2-3 mm) will be fabricated and tested.

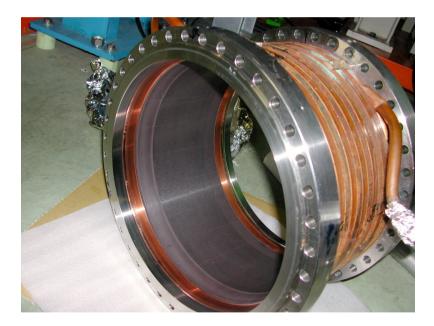
Small Beam Pipe HOM Damper



Activity for upgrading

4. HOM damper trouble: vacuum leakage of the D11A-LBP damper

- * At the end of the last year, one of the HOM damper had a vacuum leakage at a welding seam of the flange. (D11A-LBP)
- * Troubled damper was replaced to new one in this winter shutdown.



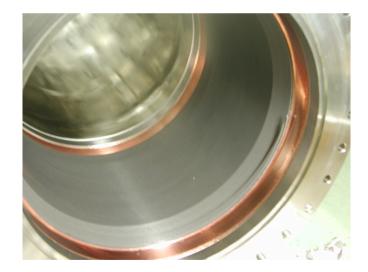
Troubled damper was replaced to new one in the tunnel.

Activity for upgrading

* During replacement of the dampers, we could inspect the ferrite surface.* No damage or cracking was observed on both SBP and LBP dampers.

Vacuum leakage happened at EB-welding between SUS and Cu.

Inside view of the D11A cavity


Activity for upgrading

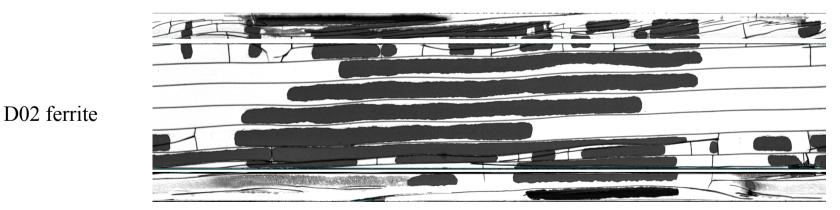
5. Cracking of HOM damper in CRAB-dummy chambers

- * Both SiC and ferrite absorbers had been installed in crab-dummy chambers of D01-section and D02-section in Tsukuba-area.
- * The damage of these dampers were found in October and December.
- * Ferrite size: 170 mm ferrite cylinder with the diameter of 240 mm.

Ferrite damper of D01 section.

Ferrite damper of D02 section.

Activity for upgrading


..... as a preliminary results.....

Both simulation of loss factor and temperature measurements showed the absorbed power of only 4 kW at the maximum beam intensity.

Ultra-sonic scanning showed a lot of cracking of the ferrite.

D01 ferrite

Spiral cracking suggests that caused by winding of cooling pipe from the out side.

Summary

6. Summary

- * Beam intensity of HER has increased to 1.27 A.
- * SC cavities can provide the voltage of 1.4 MV/cavity and 300 350 kW/cavity to the beam of 1.27 A.
- * Coupling of the input coupler has been increased on 4 cavities. $(7 \times 10^4 \rightarrow 5 \times 10^4)$
- * The HOM absorbed by the damper reached 16 kW/cavity.
 - \rightarrow SBP / LBP = 7 kW / 9 kW
 - \rightarrow No damage was observed on the dampers of D11A cavity.
- * Power test at a test stand showed no damage of the ferrite surface up to 18 kW for SBP damper and 25 kW for LBP damper, which correspond to the HOM power at 2 A in HER.
- * Cracking of the D02-ferrite suggest the improvement of the damper fabrication process should be established.