

IR Vacuum Chamber Basic design consideration for SuperKEKB

22 Feb. 2005 KEKB Vacuum Group Ken-ichi Kanazawa

Contents

- From KEKB to SuperKEKB
 - Experience in KEKB and Design Principle for SuperKEKB
- Preliminary Design Layout of IR Vacuum Chambers
- Summary and Next Step

From KEKB to SuperKEKB Synchrotron Radiation (SR) (1)

KEKB

- On the whole, COOLING IS NOT SUFFICIENT.
- For the incoming beam line, SR from far magnets was not considered seriously.

SuperKEKB

• Provide cooling every possible SR irradiation.

From KEKB to SuperKEKB Synchrotron Radiation (SR) (2)

KEKB

- The exact path of the SR from QCS and its spread were not strictly taken into account in the first design.
- This caused a high temperature at unexpected portions of a vacuum chamber.
 - Deformation of vacuum chamber
 - Motion of magnets.

- The design of QC magnets in the LoI looks trying to give a sufficient clearance for the SR down to QC2.
- The design of the beam duct layout also tried to avoid the SR.
- However, the design should be checked against the fact that the two beams and the SR don' t lie in the same plane.

From KEKB to SuperKEKB Detector Background

KEKB

- Back scattering of the SR from QCS by a HER Al beam duct became a noise source. (Cu has a smaller cross section of the back scattering than that of Al.)
- Shields against the detector background should have been incorporated from the first design.

- Chamber material: Cu (cooling, shielding, small back scatter of SR)
- Beam ducts avoid the SR down to 8m (HER downstream) and 5m (LER downstream) from IP.
- Shield should be taken into consideration from the first design.

From KEKB to SuperKEKB Higher Order Mode (HOM) (1)

KEKB

- The HOM power turned into heat in IR is, in the unit of the loss factor, around 474 V/nC.
 (Estimated from the temperature rise of cooling water)
- Heat up of the bellows will be unacceptable level in Super KEKB

- Extrapolation from KEKB gives as a heat by HOM about 100kW ×(bunch length factor).
- Is the compact HOM absorber possible?
- The cooling for HOM will be a big problem.
- The comb type bellows is expected to be durable.

From KEKB to SuperKEKB Higher Order Mode (HOM) (2)

KEKB

- Avoid a local cavity structure as possible as one can.
- Flange gap is filled with Helicoflex

- Design principle of the inner shape of chambers is same as KEKB.
- The pump slot must be designed carefully not to cause the heat up of NEG.
- Flange gap will be filled MO type gasket.
 - The design of the branching part is simmiler to KEKB.

From KEKB to SuperKEKB Electron Cloud

KEKB

• No measures

SuperKEKB

- TiN coating for the positron beam duct to reduce multipactoring.
- Solenoid is also necessary to confine photoelectrons.

The reduction of both photoelectron yield and secondary electron yield by a TiN coated chamber.

From KEKB to SuperKEKB Others

KEKB

- NEG (Non Evaporable Getter)+Sputter Ion Pump scheme.
- Bellows is welded to a vacuum chamber.
- The pressure of the positron (LER) incoming line (within 10m from IP) is higher than expected.

- The same scheme with exchangeable NEG. (as possible as one can)
- Easily repairable design (mechanically detachable bellows etc).
- Denser distribution of pumps.

Beam duct layout Right hand side (1)

In HER , all ducts are expected to avoid SR.
The BPM at the end of the QCS chamber is possible only if the electrodes clear the inner bore of QCSR.

Beam duct layout Right hand side (2)

•The space for the pump must be reserved in the magnet.

Beam duct layout Left hand side (1)

Flange connection in the bore of QCS-L (magic flange).The ducts of LER from QCSL to QC2LP escape SR

Beam duct layout Left hand side (2)

•The space for the pump must be reserved in the magnet.

Summary and Next Step (1)

Summary

- Based on the experience in the KEKB IR vacuum system, the new beam duct layout is shown.
 - Two rings separate at about 1.5m from IP.
 - HER downstream ducts avoid SR down to 8m from IP.
 - LER downstream ducts avoid SR down to 5m from IP.
 - The comb type bellows will be used and the flange gap will be filled with MO type gasket.
 - Seeking easy repair

Summary and Next Step (2)

Next Step

- To make the design more concrete:
 - Cooling structures and pumps should be added in the design.
 - The interference with magnets must be checked and be negotiated.
 - Manageability of flange connection should be checked.
 - How to fix a beam duct should be designed.
 - HOM absorber near the branching part should be studied.