

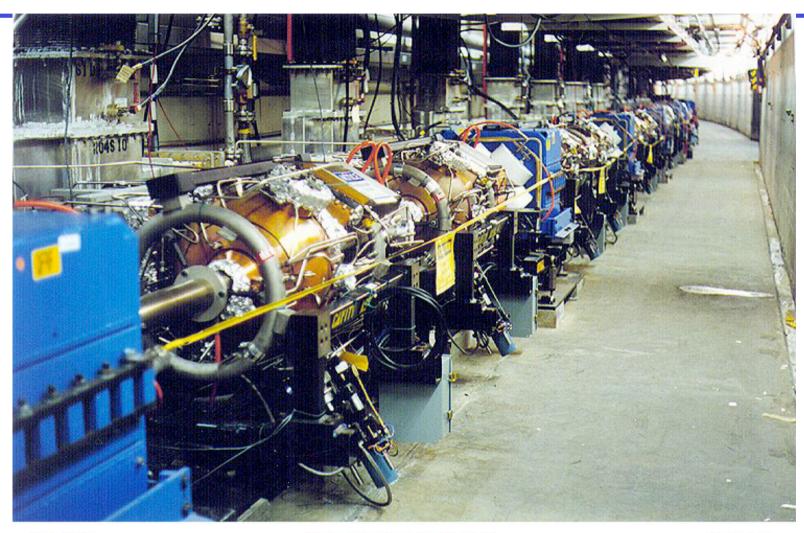
PEP-II Status and Future Plans

Nadine Kurita

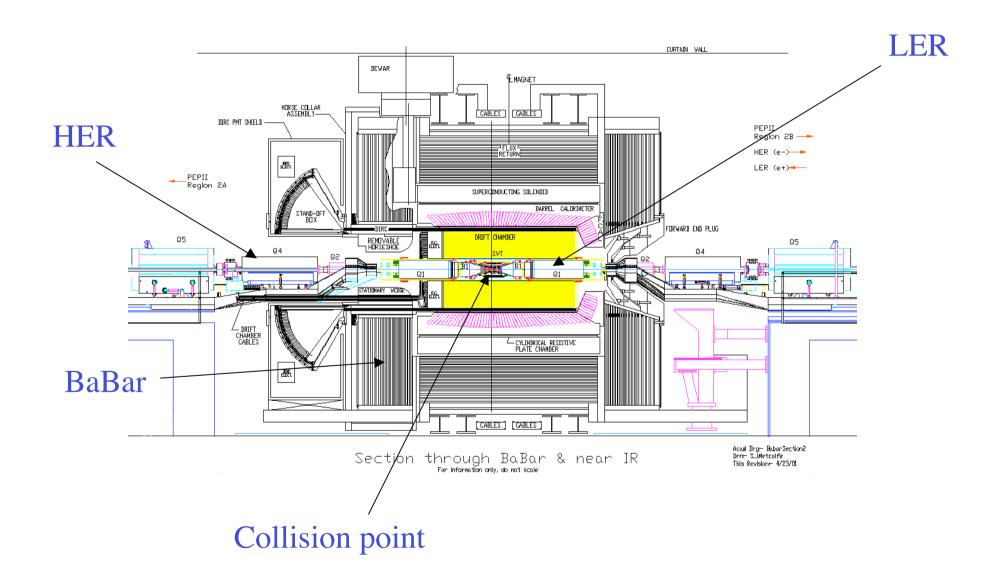
February 22, 2005

Table of Contents

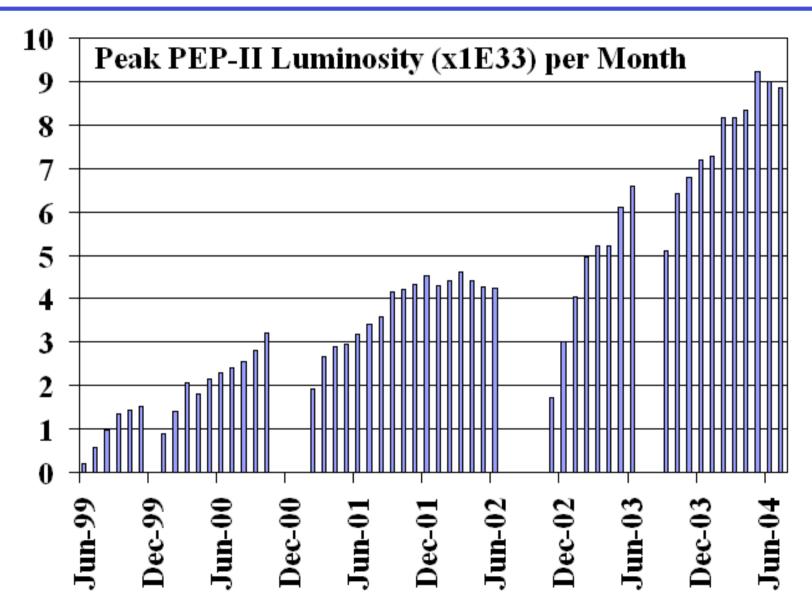
- Performance Summary
- 2004 Run
- 2005 Run
- Long Term Goals



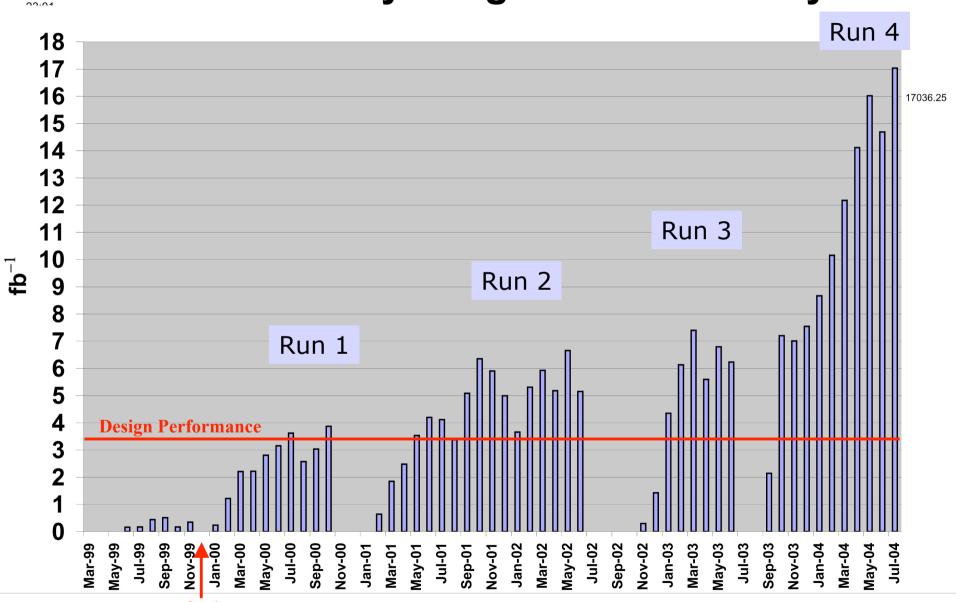
PEP-II arc section



PEP-II HER RF cavities


BR_049 HER Cavities Region 12 8-19-97

PEP-II Interaction Region Components near BaBar


PEP-II Performance Measure: Peak Luminosity

PEP-II Monthly Integrated Luminosity

PEP-II Records

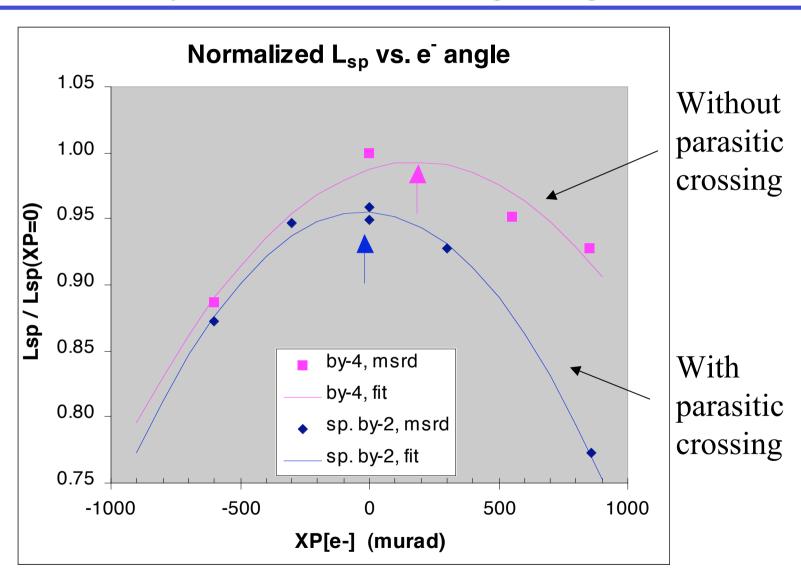
Last update: July 31, 2004

—— Peak Luminosity

$$9.213 \times 10^{33} \text{ cm}^{-2} \text{sec}^{-1}$$

May 21, 2004

1588 bunches 2450 mA LER 1550 mA HER


Integration records of delivered luminosity

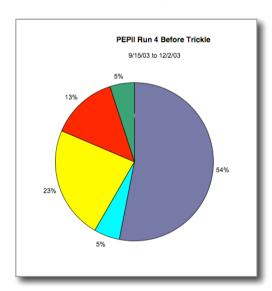
Best shift (8 hrs, 0:00, 08:00, 16:00)	246.3 pb ⁻¹	May 21, 2004
Best 3 shifts in a row	710.5 pb ⁻¹	May 24, 2004
Best day	710.5 pb ⁻¹	May 24, 2004
Best 7 days (0:00 to 0:00)	4.464 fb ⁻¹	Jul 25-Jul 31, 2004
Best week (Sun 0:00 to Sat 24:00)	4.464 fb ⁻¹	Jul 25-Jul 31, 2004
Peak Ave Lum	8.705×10^{33}	May 14, 2004
Best 30 days	16.720 fb^{-1}	Jul 2 – Jul 31, 2004
Best month	17.036 fb^{-1}	July 2004
Total delivered	256 fb^{-1}	

Luminosity versus Crossing Angle

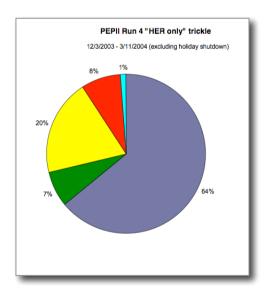
Kozanecki Sullivan Cai

Operational Improvements in FY2004

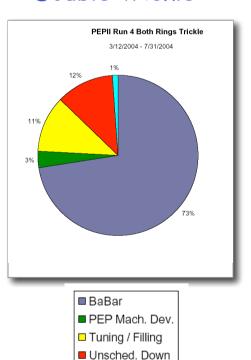
- Peak luminosity: $6.6 \rightarrow 9.2 \times 10^{33}$
- Number of bunches: $1050 \rightarrow 1588$ bunches
 - by-2 pattern (24 long mini-trains) with 2% ion gap
- Parasitic collision effects seen but small(<5%)
- Electron Cloud (ECI) effects are small (<2%)
- I+ current 1500 \rightarrow 2450 mA (3 RF stations)
- I- current 1050 \rightarrow 1550 mA (8 RF stations)
- βy^* of 12 \rightarrow 10.5 mm
- All data now taken in trickle charge mode
 - Both beams: LER in November, HER in March


PEP-II Run Time Dist. FY 04

• Average delivery: 65%


M. Stanek

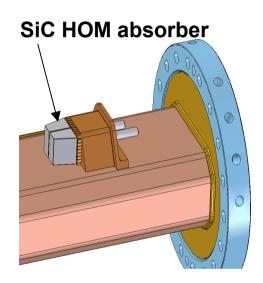
• Average tuning+injection: 17%


Pre-trickle

LER-trickle

Double-trickle

Sched. Off


Major Contributors to Performance

- Trickle Charge raised the average luminosity
 - with little doubt the single biggest success...
- Rf/LFB Improvements raised current & pk lum
 - 6-station -> 8 station running in HER
 - Increased HER current to 1550 mA
 - Increased LER current to 2450 mA
 - Shorten HER bunch length by raising HER RF voltage (14.6 to 16.8 MV)
 - Shorten LER bunch length by raising LER RF voltage (HOM heating)
 - Commissioned LGD Woofer in HER
- By-2 Pattern Commissioning: more bunches
- Lattice Improvement
 - HER steering: lower y dispersion
 - β_v^* reduction from 12 mm to 10 mm in both rings
 - Improve online tools and lattice corrections (orbit, dispersion ...)

Run 4 Major Issues

- IR 2 vacuum-related problems/HOM heating
 - VAT vacuum gate valve failed, replaced by spool
 - NEG heating
 - Limited LER beam current
 - Limited LER bunch length
- HER longitudinal instabilities
 - fixed with LGD Woofer
- Beam currents limited by RF stability
 - Mostly in the HER
 - Also in the LER because we were not able to raise the RF voltage

plenum not shown for clarity

LER upstream NEG work

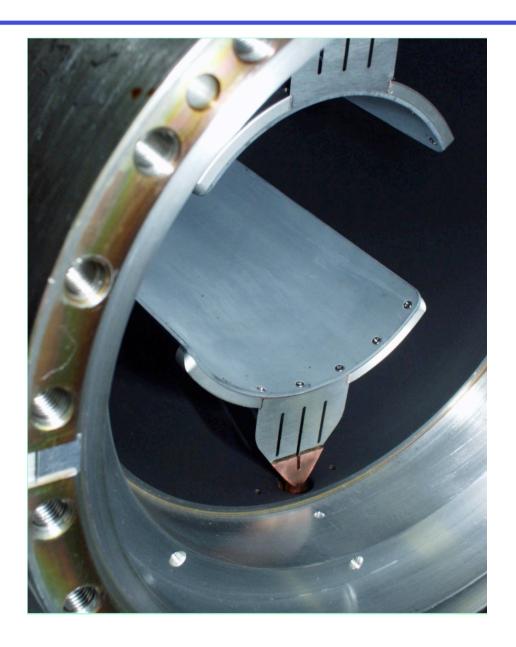
• This summer:

- We took out the nine NEGs with "c type" screens and installed a small HOM absorber in each cavity
- The total length of NEG pumping that was removed is
 5.5 m out of a total of 40.4 m
- We removed the two movable collimators
- We removed the Q4 NEG and have replaced it with a HOM absorber (another 1.6 m of pumping)
- We have added extra pumping at the port between the upstream LER Q4 and Q5 chambers
- In addition, we have added extra screening to the ion pumps in this region

Summer 2004 PEP-II Improvements

- IR2 south forward shield wall: Backgrounds
- Added another new LER RF station: Higher current
- Add a HER RF station by splitting up a current 4 cavity station into two 2 cavity stations: Higher current
- Two new "Frascati" longitudinal kickers in LER: More stability
- New electrodes for transverse kickers: More stability
- Add fans to all HER bellows: Cool Higher Order Modes (HOMs)
- Alignment work (quadrupole rolls): Smaller vertical emittance
- New LER synchrotron light monitor: Smaller vertical emittance
- IR NEG pump HOM reduction: Better lifetime and backgrounds
- New Support Tube Chiller: Higher currents

Windings finished for ECI reduction


New Longitudinal Feedback Kicker

SLAC Accelerator Department

New transverse kicker electrodes

Run 5 Status

- PEP was within 5 days of final lockup when work at SLAC was halted by our Director.
- SLAC has been working hard on re-evaluating and adapting our safety procedures.
- PEP-II Validation complete by February 24.
- Turn on in March.
- Run through the summer with a 1 month down.
 - Goal: Double our total integrated luminosity.

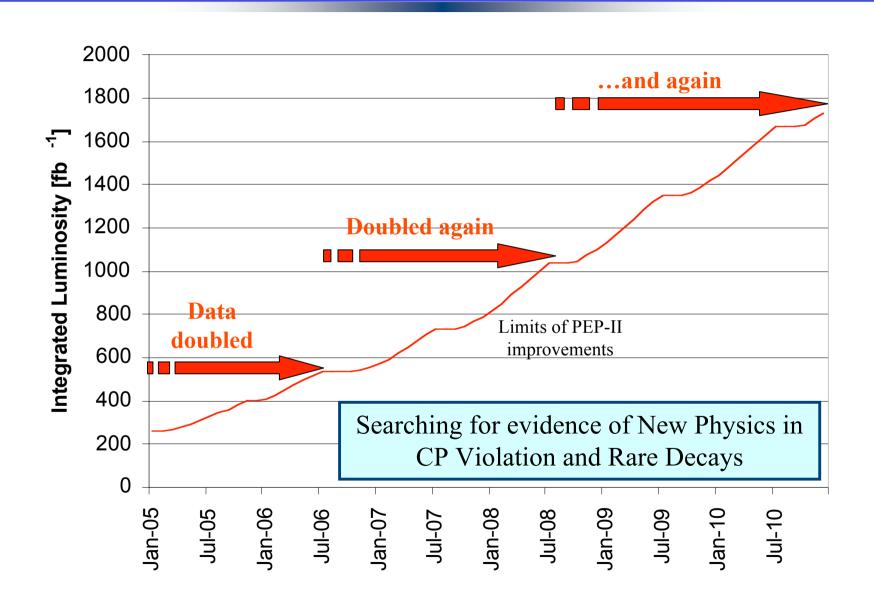
Validation Process

- A serious electrical accident occurred on October 11, 2004 (arc-flash).
- Time period October 2004 through February 2005 used for employee training and safety procedure upgrades.
- Type A Investigation Report completed December 2004.
- Corrective Action Plan produced (draft in January and final in February).
- Linac and PEP-II Proposed Restart Plan produced for the Restart Validation Team January 20, 2005.
- Validation process started January 24, 2005.
- Validation process closeout February 24, 2005.
- There will be some additional hardware and procedure rework needed following the closeout taking a few weeks.

Validation Team Sub-Topics in Review

- "Safety Comes First" Training
- Implementation of New Electrical Bulletins
- BaBar User Safety
- **Radiation Safety**
- **Electrical Safety**
- **Detector Operation Procedures**
- Hoisting and Rigging
- Accelerator Operations and Maintenance
- Integrated Safety Management System (ISMS) Implementation
- Other Departments Management
- **Training Accelerator Personnel**
- **OSHA** Audit Issues
- 1999 Linac Safety Review
- 2000 PEP-II Accelerator Audit
- 2004 BaBar Operations Review
- 2004 Linac Safety Review

Run 5 Strategy


- Most luminosity will come from higher currents
 - 3.3 A on 1.8 A by summer 2005 in 1720 bunches
- We will be pushing the rf voltages both rings
 - Reduce bunch length but also increase stability margins
- We will further reduce β_v^* in both rings
 - Presently we have 10.5 mm,
 - Would like to go towards 9 mm
 - Worthwhile even at present bunch length
- We will raise the bunch currents
 - Only way to increase beam current after filling by-2 pattern
 - This may well require us to turn on the LER wiggler

PEP-II Long Range Beam Parameters Goals

- April 2004: 2.3A x 1.4 A β_y *=11 mm 1555 bunches L=8.4E33
- July 2004: 2.5A x 1.6 A β_y *=10 mm 1600 bunches L=9.2E33
- June 2005: 3.3A x 1.8 A β_v *=9 mm 1700 bunches L=15E33
- July 2006: 3.9A x 2.0 A β_v *=8 mm 1720 bunches L=20E33
- July 2007: 4.5A x 2.2 A β_y *=8 mm 1720 bunches L=24E33
- With good integration reliability and trickle injection:
- 117 fb⁻¹ more integrated from Summer 2003 to Summer 2004.
- 530 fb⁻¹ total integrated by Fall 2006.
- 1000 fb⁻¹ total integrated by Fall 2008

Projected PEP-II Integrated Luminosity (fb⁻¹)

Overall Parameters and Goals

Parameter	Units	Design	Best in collision	Future 2007 goal
I+	mA	2140	2450	4500
I-	mA	750	1550	2200
Number bunches		1658	1588	1720
$eta_{ m y}^{*}$	mm	15-20	11	8.5
$\xi_{ m y}$		0.03	0.045, 0.06	0.055-0.07
Bunch length	mm	12	10-12	8.5
Luminosity	$x10^{33}$	3.0	9.2	23
Integrated lumi / day	pb ⁻¹	130	710	1600

Twice design

Over five times design!

Future luminosity increase factors

Parameter	Present	Future	Luminosity gain ratio	Hardware and work needed
LER current	2450 mA	4500 mA _		Two RF stations, new IR vacuum chambers
HER current	1550 mA	2200 mA	1.61	Two RF stations, new IR vacuum chambers
β_y^*	10.5 mm	8.5 mm	1.24	HER higher tunes, RF & power supplies work
ξ _y	0.06 L 0.045 H	0.070 L 0.055 H	1.17	Tune plane, coupling, & IR work, vertical emittance
Parasitic Δx	3.22 mm	3.80 mm	1.08	B1 magnet change (?)
Total			x 2.52	

Expected PEP-II Delivered Integrated Luminosity

Delivered as of end of fiscal year	PEP-II Projection	"Delta"
FY2004	256/fb	117/fb
FY2005	387	131
FY2006	528	141
FY2007	821	293
FY2008	1156	335
FY2009	1501	345
FY2010	1847	346

Five month down

Major Future Maintenance Down Activities

- Install LER-5 RF station
- Install HER-10 RF station
- Remove support tube for SVT work to fix radial ion pump, add an IR BPM, new Be bellows (TBD)
- Upgrade several high-power vacuum chambers (Q4, Q5, Q2 bellows, LER abort window, absorber bellows)
- HER lattice upgrade for lower momentum compaction and shorter bunches
- New RF comb filters
- New klystron linearizer
- New transverse digital feedback processors

Conclusions

- PEP-II has reached a luminosity of 9.2×10^{33} /cm²/s.
- PEP-II has delivered 710 pb⁻¹ in one day.
- PEP-II has delivered 117 fb⁻¹ in Run 4!
- PEP-II has delivered 256 fb⁻¹ since May 1999.
- Trickle injection in both rings all of the time.
- Near term upgrades are going well.
- Planned upgrades toward 2.3×10^{34} are on track.

End of Presentation