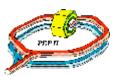


Outline



- **O Current & Energy Future Requirements**
- **O Work Plan**

O Status

- Sear IR
- ♥ Far IR
- Diagnostics
- Additional upgrades
- Future upgrades
- **O Summary**

Upgrade Plan Current & Energy Requirements

○ LER – main ring

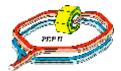
- & FY2005 Goal: 3.6 A, 3.1 GeV
 - > FY2005 SR power is less than the design limit.
- ✤ FY2007 Goal: 4.5A, 3.1 GeV
 - > FY2007 SR power is less than the design limit.
- Verifying that all chambers met the original CDR design parameters.

○ HER – main ring

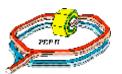
- Schambers design limit 3.0 A on 9.0 GeV
- ♥ FY2005 Goal : 1.8 A, 9.0 GeV
 - > FY2005 SR power is less than the design limit.
- ✤ FY2007 Goal: 2.2 A, 9.0 GeV
 - > FY2007 SR power is less than the design limit.

Upgrade Plan

Current & Energy Requirements (cont.)

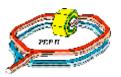

o Interaction Region (IR)

- LER Beam Power
 - > Chambers design limit 3.0 A on 3.1 GeV
 - > FY2005 Goal : 3.9 A, 3.1 GeV
 - ◆ FY2005 22% increase in SR power.
 - > FY2007 Goal: 4.5A, 3.1 GeV
 - ◆ FY2007 50% increase in SR power.
- **HER Beam Power**
 - > Chambers design limit 2.0 A on 9.0 GeV
 - > FY2005 Goal : 1.8 A, 9.0 GeV
 - ♦ FY2005 SR power is less than the design limit.
 - > FY2007 Goal: 2.2 A, 9.0 GeV
 - FY2007 10% increase in SR power.


Upgrade Plan Other Requirements

O Increased HOM Heating, RF shielding

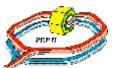
- **Bunch Length**
 - > 2004: 1.16 cm
 - > 2006: 0.9 cm
- **Bunch Current**
 - > LER 45% increase
 - > HER 30% increase
- **O New Lattice**
 - ✤ IR Lattice and BSC received 11/4/04


PEP-II Work Plan

 Goal –create a work plan to reach the increased luminosity schedule.

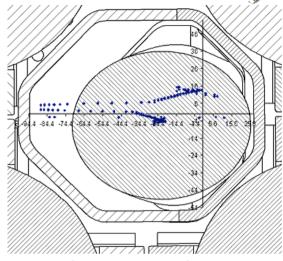
 Identified chambers for analysis to determine upgrade needs.

- **Screated Vacuum System Shortlist**
 - Looked at current limitations, operational failures and limits to determine chambers that need to be evaluated and possibly rebuilt.
 - > Re-analyzed chambers.
 - B1 LEB/HEB chamber
 - Q2 Backward Chamber
 - Q2 Forward Chamber
 - Q1 Chambers
 - Luminosity Chamber
 - High Power Dump Chamber

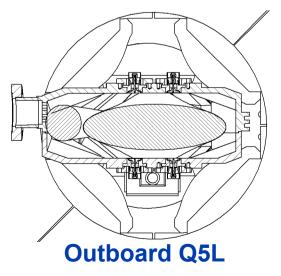


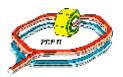
PEP-II Work Plan (cont.)

- Gathered drawings and design reviews for items on the Shortlist.
 - > Received additional documentation from LLNL.
- **Strategize work for projected downtimes and short term goals.**
- **Solution** Solution S
 - Completed preliminary conceptual designs
 - > Detailed engineering estimates
 - > Opened AIP projects
 - Vertex Chamber
 - ♦ B1/Vertex Bellows
 - Q1/Q2 Bellows
 - ♦ HER & LER Q4/Q5 chambers
 - Q4/Q5 Bellows Module
 - IR HER HOM absorbers


- IR LER HOM absorbers
- IR Radial Ion Pump
- Q2 Backward Chamber
- HER & LER RF stations
- ✓ LER SLM
- ✓ Frascatti Kicker

IR Design Challenges



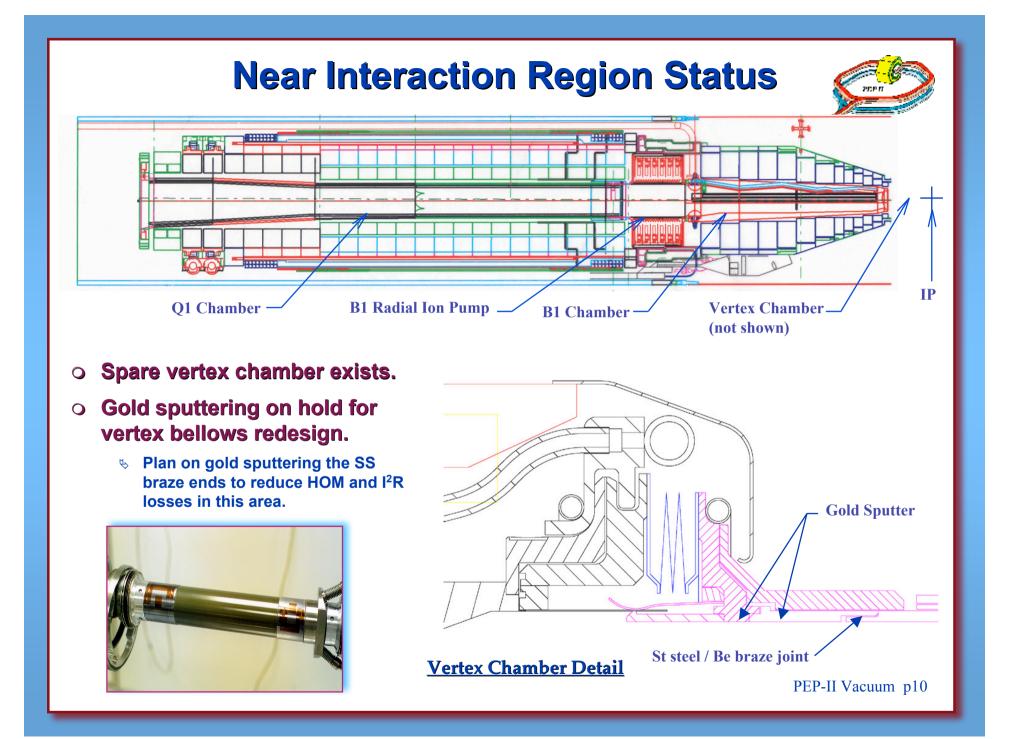

• Beam Stay-Clear and Magnet Stay-Clear

- **Keep existing magnets**
- ✤ Beta *s for HER & LER
 - Beta x* = 28 cm
 - Beta y* = 7 mm
- Emittances for HER & LER
 - > Emittance x = 60 nm-rad
 - > Emittance y = 24 nm-rad
- \mathbf{V} 12 σ + 0 mm in X
- $\mathbf{9} \sigma \mathbf{+} \mathbf{0} \mathbf{mm} \mathbf{in} \mathbf{Y}$
- ৬ Luminosity Cone : ~6.24σ
- **Space Constraints**
 - Limits pumping, diagnostics, cooling
- Limiting BSC through Q2 is
 - 4 12 σ + 0 mm in X
 - \mathbf{i} 8.5 σ + 0 mm in Y
 - New chambers will be within the BSC defined by Q2.

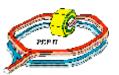
Outboard Q4R

IR Design Challenges

O HOM Power

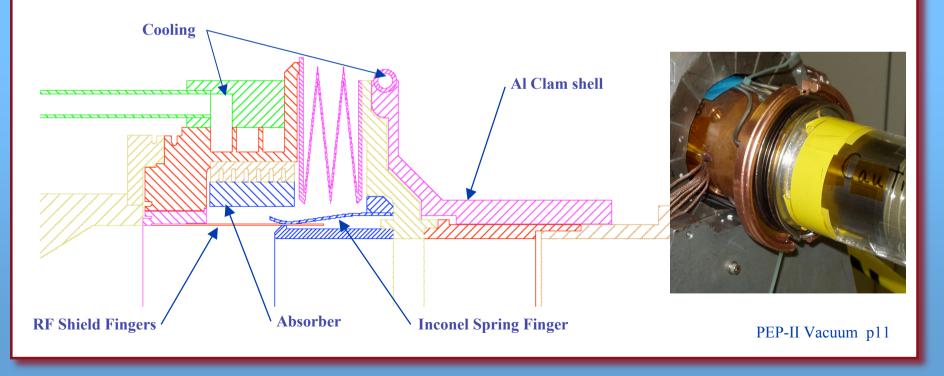

- IR geometry inherently produces a trapped area
 - Two larger ring chambers (BSC driven) into a small IP chamber
- Shorter bunches & higher current increases HOM power trapped in the near IR chambers.

O Backgrounds

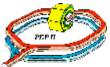

Solution Second Secon

○ SR power

- **SR** fans in this area have high linear heat loads.
 - B1R (Forward) is 660 W/mm. Three times higher than any linear density in the PEP-II vacuum system
 - Intercepting B1 fans during mis-steers could cause permanent damage to chambers – actively safe system required.

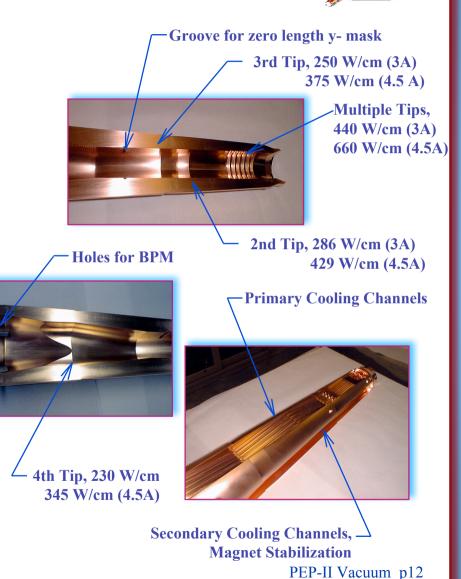


Vertex Bellows Status



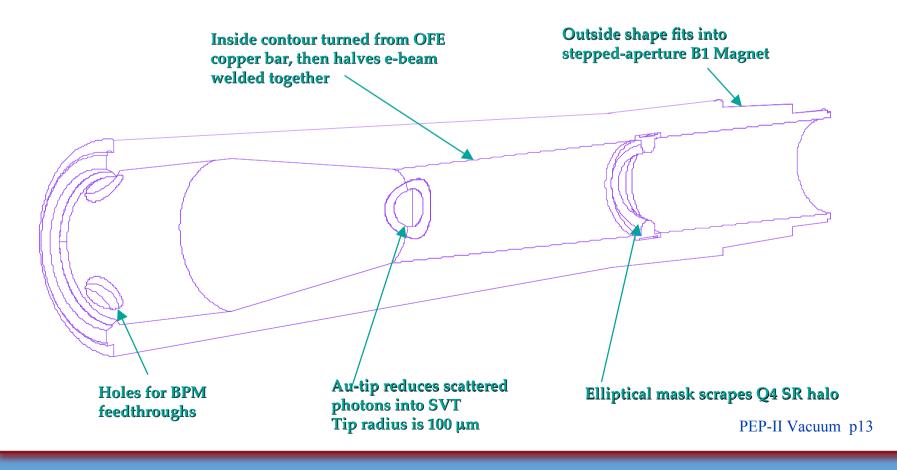
O Re-design Vertex Bellows

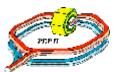
- Section 5 TE power leaks past the RF shield and heats of the stainless steel welded bellows and inconel fingers.
- Seduce power into the stainless steel welded bellows cavity.
 - > Designed small cooled AlNiSiC absorbing tiles in the bellows cavity space.
- **besign complete pending final design review**
 - > HOM and thermal analysis completed. (See J. Langton's talk)



B1 LEB Chamber

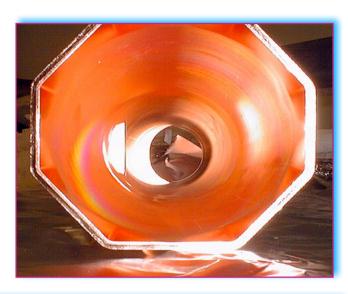
O B1 LEB (R, Forward) masks

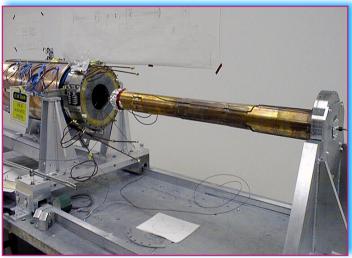

- Power densities are about ~660 W/cm (4.5A, 3.1GeV) on first tip, from Q1 magnet.
 Power density is high due to close proximity of Q1 magnet & B1 chamber.
- New analysis combined with fatigue test data and pull tests indicates that masks are safe for 4.5 A.
- Solution State State
 - > Manpower, cost, schedule
- ✤ Future spare B1 chamber.
 - Serrate other tips to reduce stress levels.


B1 HEB Vacuum Chamber

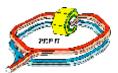
🗞 B1 HEB –

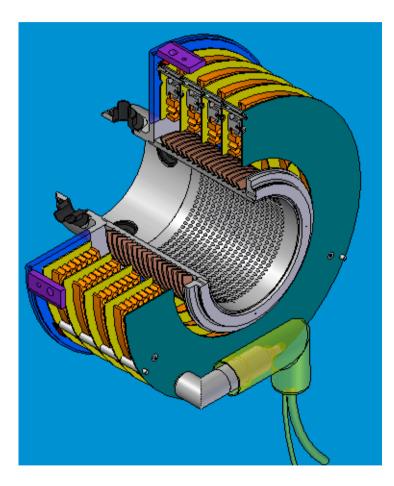
- > Additional 10% power. Power from upstream Q4 magnet.
 - Engineering analysis reviewed and higher current operation should be acceptable. Further review is in progress.
- > Elliptical blades are not a source of excessive HOM power.
- → B1 HEB chamber will not be rebuilt.

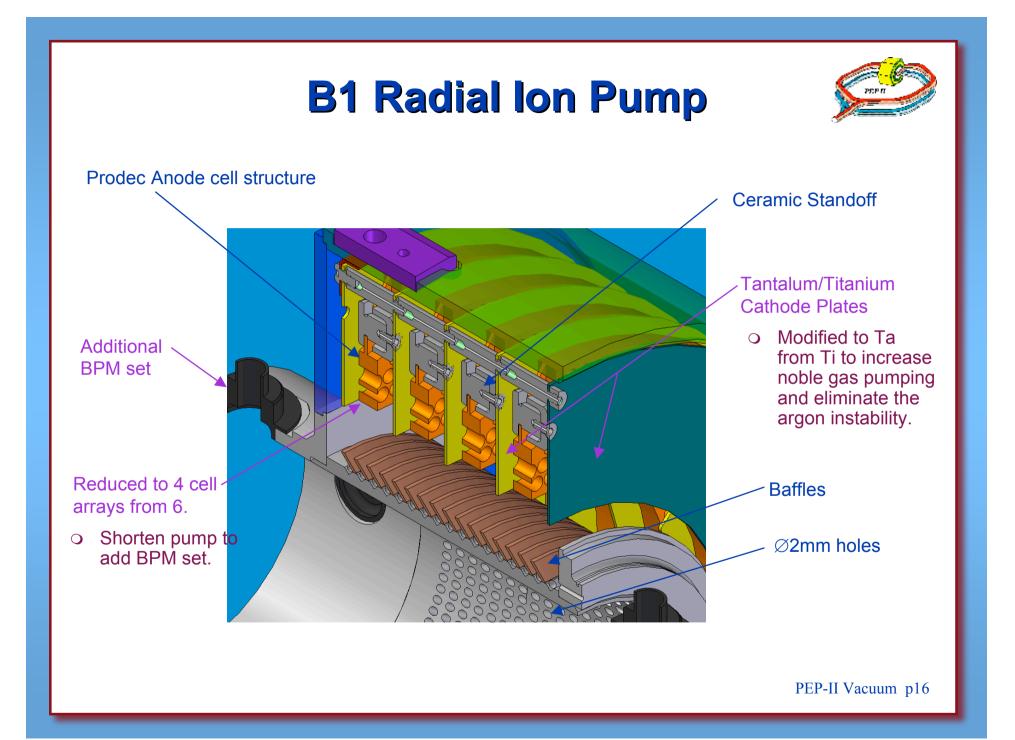


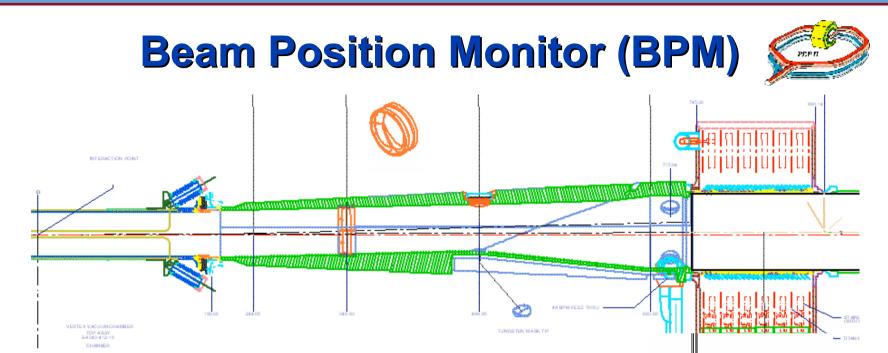

Q1 Chamber

• Q1 Chamber will not be rebuilt.

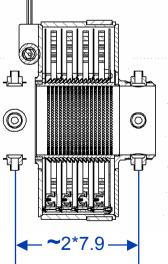

- **Background blade masks.**
 - "Blade" masks are thin and abrupt, does not have a 1:10 taper.
 - Only increases the broadband, but doesn't effect the narrowband impedance.
 - Therefore, making a smooth background mask would not reduce the HOM's stored in the IR chambers.
- ✤ Power on mask tips.
 - > Q1B (Forward)
 - ♦ Z=-1600mm (vertical) no power
 - Z=-1100mm(elliptical)
 - 150W (2A, 9 GeV), HEB Q4 mask
 - > Q1B (Backward)
 - Z= 950mm (elliptical)
 - 680 W (3A, 3.1 GeV), 1020 W (4.5A), LER BV1 fan
 - q" = 694 (3A), 1041 W/cm² (4.5A)
 - ♦ Z = 1200 mm (vertical) no power
 - Scaling thermal results indicate masks are within stress limits at 4.5A.

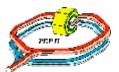



PEP-II Vacuum p14

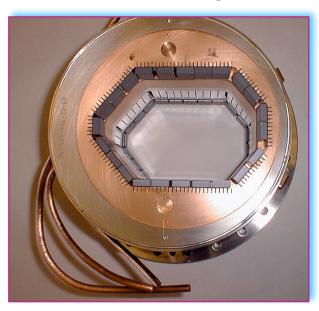

B1 Radial Ion Pump

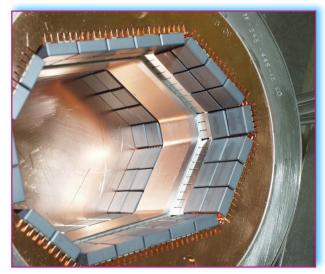
- New Design Complete pending final design review.
- Addresses current pump issues
 - > Argon Instability
 - Noble diode pump, rebuild with tantalum plates
 - > Pump failures
 - Two circuits,
 - Higher rated feedthru design
 - Improved mechanical fabrication design
 - Verified pump screen is sufficient with new bunch parameters
 - Reduce pump physical dimensions to add additional BPM set.
 - > No additional shielding
- New pump ready for installation 2005 Summer Downtime.



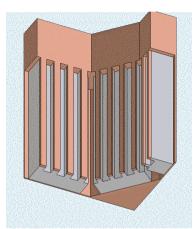


O Upgrade improvements

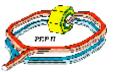

- Solution Soluti Solution Solution Solution Solution Solution Solution S
- The new set is separated in z by ~f * 7.9 cm from the BPM's in the B1 chamber, where f = 2.
- 7.9 cm corresponds to a quarter wavelength of 952 MHz, the BPM processing frequency.
 - In the electronics they can then synthesize independent linear combinations of the signals which correspond to the two beams moving in opposite directions.

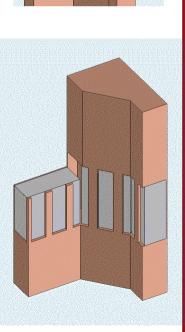


Q1/Q2 HOM Bellows

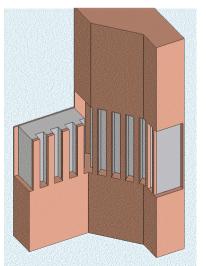


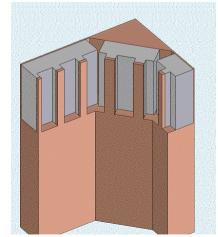
- FY2003 added 4 layers of tiles per module.
- O Absorbing ~10 KW presently
- O Predict ~ 50 KW in 2007
- Numerous iterations on HOM absorbers have been analyzed by S. Weathersby and A. Novokhatski (38 runs).
 - Soal: Create a HOM absorber that doesn't generate ~50% of its absorption power.
 - Reduce monopole without significantly reducing dipole and quadrupole modes
 - Most effective design requires at minimum 4" slots as in the Straight HOM Bellows.
 - ✤ The optimized design for various modes must be chosen by February 2005.
 - > A few more design/analytical iterations will be performed
 - Reduce power absorption, but still reduce HOM power at the vertex ends, vertex bellows and radial ion pump.
 - Vertex bellows will have HOM tiles
 - Gold plating will be extended on the vertex ends.



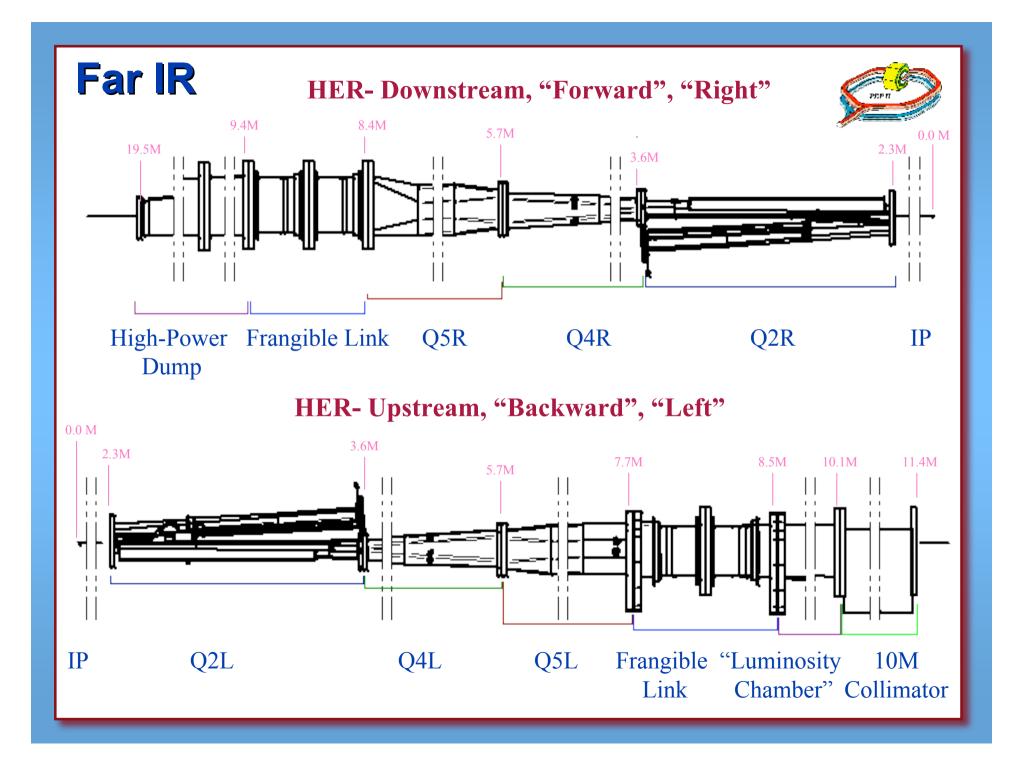

Q1/Q2 Blws - HOM Analysis

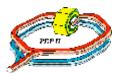
• 4" long tile sets


- Suppresses the monopole mode without reducing the dipole and quadrupole mode
- Sasha calculated the set back of the tiles



PEP-II Vacuum p19

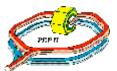

• Focusing on 2" long tile sets


Q1/Q2 Blws - Design Status • New concept developed • Absorbing tiles **based o** is open to the informat available convolutions \circ Maximun **No additional tile** set needed in Tile/slot bellows cavity. 喙 ~2.4" **O HER Arc Style Bellows** Spring `**⊌** Stub further the travel and **BF** shield offset requirements to increase length

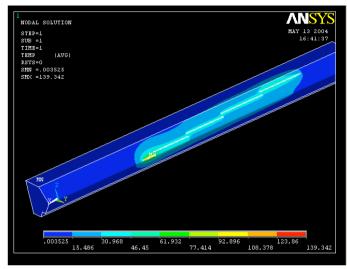


Q2 Chamber (cont.)

- > 8KW from LEB B1 and Q1
- > Designed for three conditions
 - Solonoid on
 - Solonoid off
 - Solonoid not there
- Heat Loads
 - Power density was highest in the 'NO" solonoid condition because it placed two beams in the same spot on the mask.
 - Re-analysis of chamber will be done with new geometry, lattice and current.
 - Analysis scheduled for January.
- Currently no plan to rebuild this chamber.



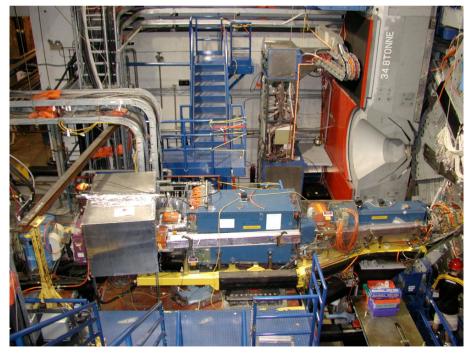
Q2L Wedge Mask

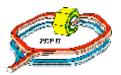


Q2 Chamber

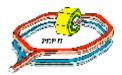
♦ Q2R (Forward)

- > Replaced Q2R with a Q2L chamber in 2002.
 - Increase BSC acceptance and reduce HOM.
 - Failed due to material flaw in the GlidCop.
- > Original Q2R chamber replaced in 2003.
 - Clips BSC
 - No evidence that it creates increase HOMs.
- > New Q2R is in fabrication.
 - Some parts received.
 - Complete by April 2005.
- > Thermal analysis completed.
 - Simplified 3D extrusion and no fins were included in the model.
 - Peak ∆T = 139 C (tip of the mask from QD4.8).
 - Water wall $\Delta T = 58$ C.

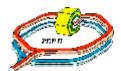

A. Sheng


	Length (inch)	Q (w/cm)	Power (w)	beam ht (in)	Peak power density (W/in^2)	
QD4.4	2.2008	104.9	586.12	0.0298	8934.792	
QD4.5	2.248	90.73	518.06	0.03	7687.311	
QD4.6	2.0472	88.64	460.92	0.0301	7467.797	
QD4.7	1.9094	83.95	407.17	0.0304	7022.742	
QD4.8	0.6654	212.3	358.82	0.0307	17590.1	
•• • •	PEP-II Vacuum p23					

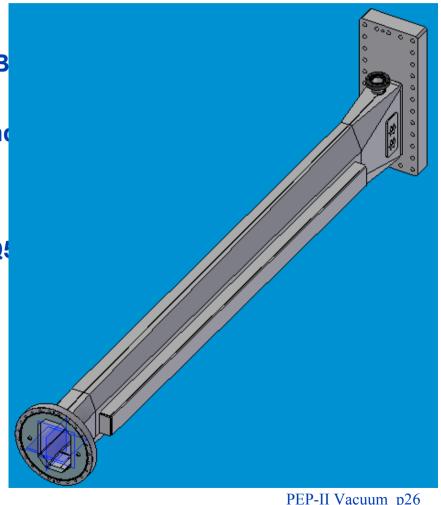
Outboard of the near IR

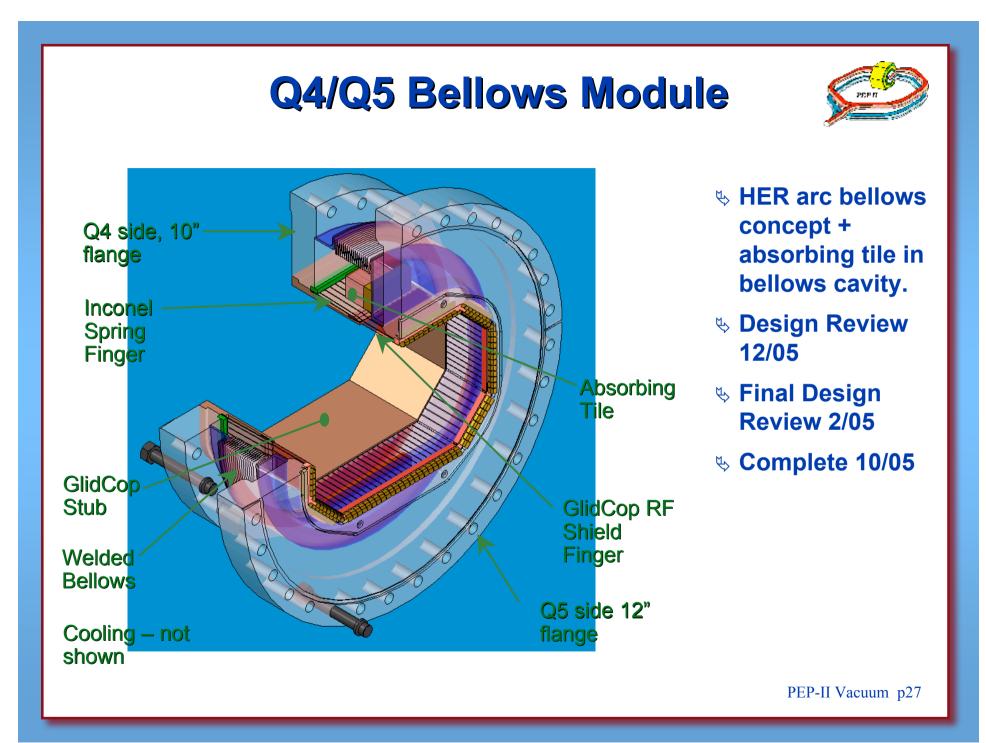

O Q5 & Q4 HEB Chambers

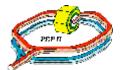
- **General problems**
 - > Mechanical & HOM failures in the NEG screens
 - > Beam Stay Clear (BSC) & Lumi cone.
 - > Thermal motion issues?
 - Magnet instabilities
 - Q4 & Q5 are rigid chambers that have minimal to no clearance to their respective magnets.
 - Load on Q2 chamber, IR support raft, magnets
 - Global alignment error between the "Bong" Collimator and Q5.
- § Q5R (Forward End)
 - Flange heating
 - > Neg screen destorted
- Solution States Stat
 - > Masks failed and replaced
 - > Neg screen detached
- & Q4R (Forward End)
- & Q4L (Backward End)
 - > Masks failed and replaced


HER Q4 & Q5 Chambers

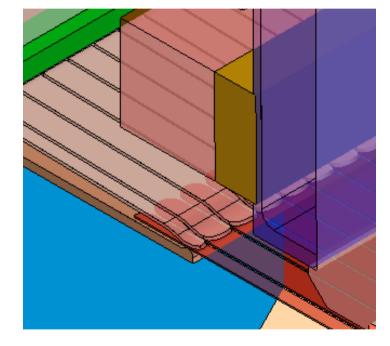
• Status letailed tion from LLNL 6/04 endor quotation for lls.

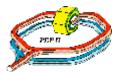

- Modeled existing magnets and chambers.
- **Shermal and structural analysis completed.**
- ✤ Final Design Review 2/05
- ✤ Ready for installation 8/05


HER Q4/Q5 Chambers


○ Goals achieved

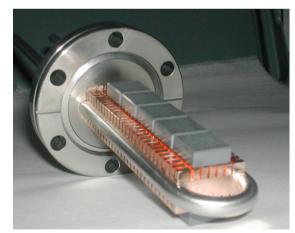
- ✤ LER: 4.5A, HER 2.2 A
- Besigned between the defined B existing magnets
- ✤ Maintain a 2mm gap to poles and
- **Beduce thermal gradients**
 - > Aluminum clamshell design
- Added a bellows between Q4, Q4
- Improve kinematics and stabilize BPM supports
- Decrease the TE leakage to the pumps
 - Screen hole diameter reduced to 3 mm and depth increased to 6mm.




Q4/Q5 Blws Detail Design

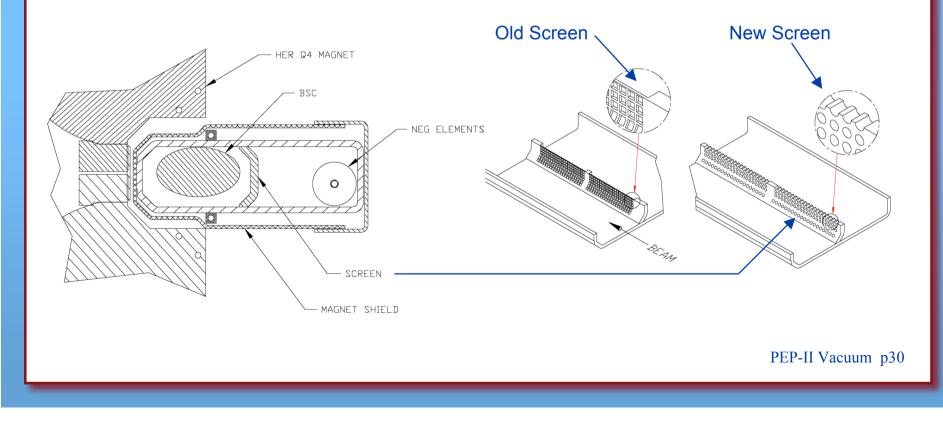
- HER Arc Bellows concept with absorber
- Ensure failure does not result in the RF shield falling into beam tube
 - Shield fingers slide on outside of chamber stub
- Keep high stress areas away from high heat areas
- Keep steps to a minimum, reduce impedance
- Plating to minimize wear, decrease cold welding, solid lubrication

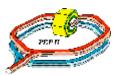
LER Q4/Q5 Low pressure chambers



O Two major issues led to redesign

- **NEG heating problem**
- ✤ Thermal motion of the backward raft/magnets.
- **o Status**
 - ✤ NEGs removed this summer and absorbers added to pump passages.
 - Solution States Sta

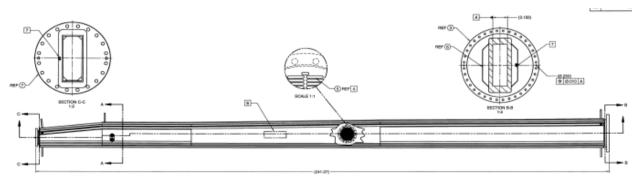

LER TSP/Ion pump manifold

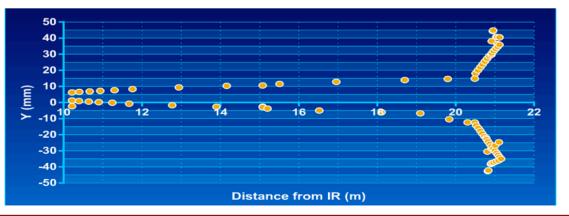

LER Q4R Absorber

LER Q4/Q5 Low pressure chamber

- New design for Q4 and Q5 chambers underway (see J. Langton 's talk).
- Improve RF screens
- ♦ Add cooled HOM loads (TBD)

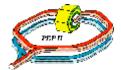
High Power Beam Dump

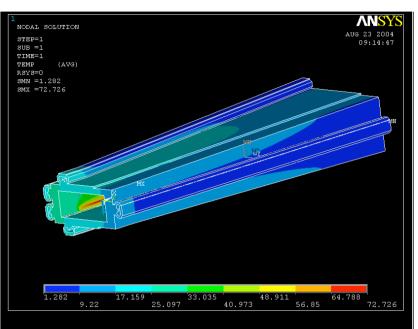


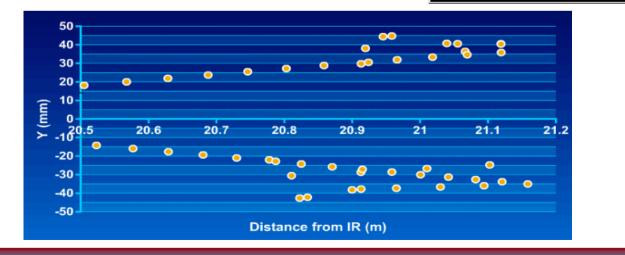

○ Current design limit 1.5 A, 9GeV

- 47% increase of SR at 2.2A
- ✤ 10 21 m from IP on forward side.

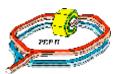
○ Chamber re-analyzed for 2.2 A, 9GeV


✤ High power beam dump (HPBD) is subjected to 127 kw



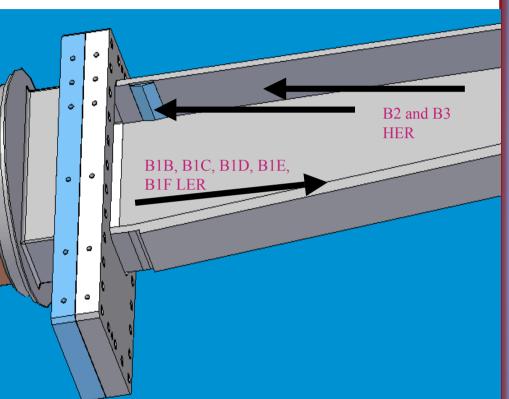


High Power Dump Chamber

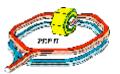

- $\Delta Tmax = 72 C at section 3.$
- omax = 13 KSI (combined thermal and mechanical stress).
 - In half hard copper and not in the weld joint.
- Temperature analysis fits well with thermocouples data.
- HPBD is passively safe at HER beam current 2.2 A.

A. Sheng

Luminosity Chamber

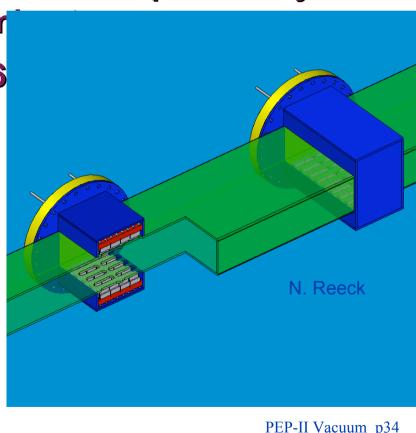


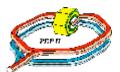
O Chamber reanalyzed


- ✤ 2,560 W of LER @ 4.5 A,
- ✤ 323 W of HER @ 2.2 A,
- 10% reflected power (288.3 W)
- ✤ 1kW/m HOM (1,625 W)

$\odot \Delta Tmax = 65 C at mask tip.$

- omax = 16 KSI (combined thermal and mechanical stress)
- Luminosity chamber is safe at LER 4.5 A and HER 2.2 A beam current.

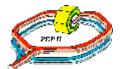

HER Moveable Collimator


- Chamber screen is not passively safe for > 1A on
 3.5 GeV during a vertical mis-steer
- Run with the known risk and have a spool ready if it fails from a high current m
- O Build new chamber for 2006
 - Fixed collimator
 - **HER absorber added to chamber**

O Status

- Scheme AIP started
- New chamber designs underway
- HOM calculations performed and designs is being optimized to absorb HOMs.

Diagnostics Upgrades



O Diagnostics

- Transverse Feedback Chambers
 - > Thermal/power issues
 - Kicker feedthrus/connectors
 - Aluminum electrode
 - New Molybdenum electrode and flexure design complete and fabricated.
 - Spare chamber retrofited with new electrodes and flexures.
 - > Installed this summer.

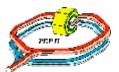
Diagnostics Upgrades

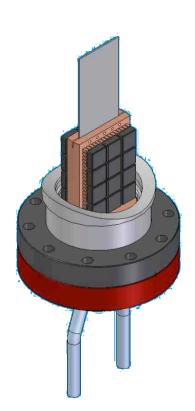


Longitudinal Feedback Chambers

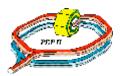
 Fracati style kicker completed and installed this summer

SLM (LER)


- Modified LER pumping chamber and special photon stop installed this summer.
- Front-end components and new diagnostics installed this summer.
- > Alan Fisher will discuss this project in detail on Tuesday.

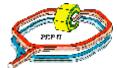

Vacuum p36

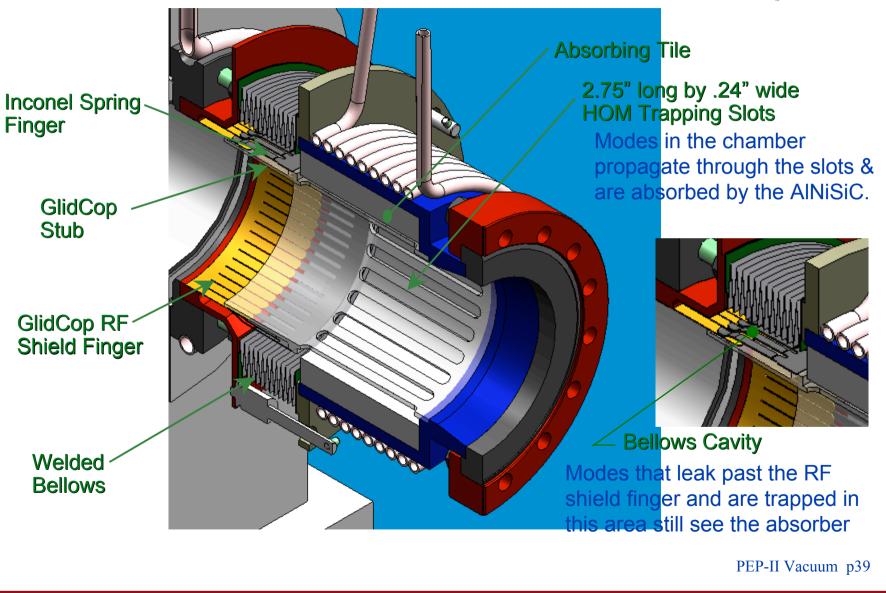
Additional Upgrades

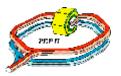


O Others

- **& LER Abort Window**
 - Re-analyzed and verified that it will not survive 4.5A.
 - Possible to build a Ti window, but it would be difficult to retrofit existing chamber.
 - > Titanium spoiler will be placed upstream of window.
 - More cost effective
 - HOM analysis in progress
- Elliptical & Round Valves
 - Elliptical valves have failed in several location.
 - > Delay rebuild of valves
 - > Test a HOM absorbing bellows near valves.


LER Abort Spoiler M. Dormiani




HOM Absorbing Bellows

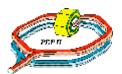
- New bellows designs that also function as beamline HOM absorbers.
 - ✤ LER arc bellows
 - **Straight bellows**
 - Q2 bellows
- New bellows designs that have absorbers that protect themselves from modes that leak behind their RF shields.
 - ♦ Vertex bellows
 - & Q4/Q5 bellows

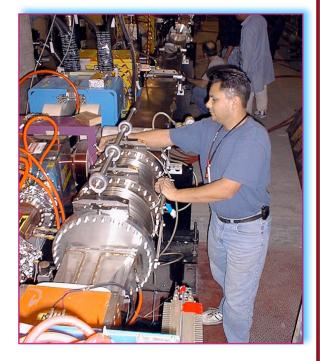
Straight HOM Blws -Design Details

Straight Section HOM Bellows

• Prototype of the HOM absorbing bellows

- **Simple round geometry**
- Locate near isolation valves to tests its impact on HOMs in neighboring components.
- Conceptual design complete
- HOM calculations are being done to optimize tile size and slot dimensions.
- Initial HOM analysis shows that the concept works.
 - Reduces monopole absorption while optimizing dipole and quadrupole field absorption.


Upgrades

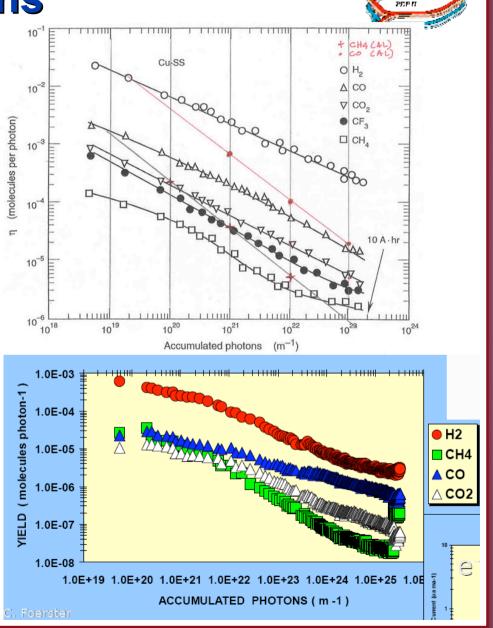

✤ HER IR-2 transition

- > Conceptual design complete.
- > Thermal & structural analysis under review.
- Final design review Jan '05.
- > Ready for installation Aug "05.

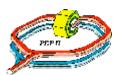

• Future Upgrades

- **HER & LER Frangible Links-Lumi**
 - > Meets current requirements
 - Possible rebuild in the future for improved maintenance.

Future Upgrades (cont.)


LER photon stops

- Design reports indicate that the photon stops were designed for 3A and 3.5GeV, therefore it can handle 4.5A on 3.1GeV.
- > We will re-analyze the photon stops prior to 4.5A operations.
- > Transient analysis needed for water failure scenario
 - Design in MPS to prevent failure during loss of water.
 - Flow switches are costly and could cause excessive spurious trips.
 - RTD or klixon transient analysis needed
- LER Wiggler Vacuum (IR6)
 - > **BPM TE mode problems**,
 - Need to re-examine wiggler power and bend magnet power water channel problems.
- ✤ IR 10 Wiggler (NEW)
 - Required to reach higher luminosity


Vacuum Calculations

PEPT

- Lou Bertolini's and Mike Sullivans vacuum calculations were updated this year.
- Rebuilt the geometry/ conductance/ pumping from drawings of the existing IR.
- New vacuum calculations should be complete early next year.
- Local areas are being reanalyzed in ANSYS.
- Improved PSD rates are planed to be used.
 - **Solution 2** orders of magnitude lower.

Summary

O Progress

- Schambers needed for the upgrade have been identified and prioritized
 - > Vertex Bellows
 - Radial Ion Pumps
 - > Q1/Q2 Bellows
 - > Q2 Forward Chamber
 - > HER & LER Q4/Q5
 - > Q4/Q5 Bellows
 - > BPMs
 - > LER Abort window
 - > HER IR transition
 - > LER bellows prototype
 - > HER IR Collimator
- Work load has been reduced
 - > Re-analyzed chambers and determined that they should survive the new beam parameters.
 - ♦ B1 LEB & HEB
 - ♦ Q1 LEB & HEB
 - High Power Dump Chamber
 - Luminosity Chamber

Q2 Backward Chamber (TBD)

Summary (cont.)

- Chambers required for the summer '05 downtime have progressed and fabrication will start at the beginning of '05 and be ready for installation during the fall downtime.
- New hardware to be installed for the '06 downtime have also been identified and projects are also progressing.