SuperKEKB Overview Update

10th KEKB Accelerator Review Committee 22 February 2005

Toshihiro Mimashi, KEK

(Many of the slides are borrowed from M.Masuzawa)

Contents

Goal of SuperKEKB
Strategy to reach the goal of SuperKEKB
Overview of each components

What is the problem ? Where we stand.

Summary

Peak Luminosity Goal

Most of the components (magnets, klystrons, etc) will be re-used.

Shutdown for 18-26 months in 2009-2010 for upgrade. 0.6 /ab/month in 2020.

SuperKEKB Budget profile

総額: 465.8 Oku-yen 140 120 RF Vacuum Magnet Linac 100 Damping Ring Budget (Oku-yen) \mathbb{N} 33 \mathbb{R} Beam Monitor \mathbb{Z} Infrastructure 80 Control Π 60 40 20 0 2006 2011 2007 2010 2008 2009

Fiscal Year

Increase beam currents • 1.6 A (LER) / 1.2 A (HER) \rightarrow 9.6 A (LER) / 4.1 A (HER) Smaller β_y^* • 6 mm \rightarrow 3 mm Increase ξ_y • 0.05 \rightarrow 0.14

For Peak Luminosity improvement Increase Beam current Vacuum Upgrade (Y.Suetsugu) • ARES & SCC Upgrade (T.Abe, T.Furuya) • Smaller β_v^* • Lattice (Y.Ohnishi) • QCS (N. Ohuchi) • IR design (Y.Funakoshi,K.Kanazawa) • Increase ξ_v Crab crossing increase Luminosity ?

For Integrated Luminosity improvement and others

Injector Upgrade Continuous injection @ 50Hz ? Minimize Belle dead time caused by the injected beam (Dumping Ring) • 3.5msec dead time x 50Hz => 17.5% dead time Charge exchange : 8Gev e+ beam (T.Kamitani) Positron source (T.Suwada) Others

Issues

- Charge exchange ? (LER:e- and HER:e+)
- LER/HER Current ratio is 9.1/4.5 ?
- Can we fill 5000 buckets ?
 - Bunch-by-bunch Feedback System
 - Beam-Beam
 - Parasitic collision ? (M.Tawada)
 - Single Beam
 - Photoelectron (Ante-chamber+Energy switch

+Low SEY surface chamber +

Solenoid)

(S.Katoh, Y.Suetsugu)

Can we get enough budget ?

Summary

- SuperKEKB aims at a peak luminosity of
 - 1-5×10³⁵ cm⁻² s⁻¹, a new luminosity frontier for colliders.
- The basic design work has been finished and a Letter of Intent was published this year (Edited by J.W.Flanagan and Y.Ohnishi,KEK Report 2004-4 June 2004).
- More simulation and intensive hardware R&D work towards SuperKEKB are on-going.

Impedance and Collective Effects (K.Shibata)

- Resistive Wall Instability
 - Growth rates (800-1000 s⁻¹) <damping rate of feedback system (5000 s⁻¹).
- Closed Orbit Instability due to long-range resistive wake (Danilov)
 - Thresholds (12.3/12.2 A for LER/HER) > design currents
- Electron Cloud Instability (Positron Ring)
 - With ante-chambers and positrons in the HER, simulations show that 60G solenoid field should clear the electrons.
 - Uncertainties:
 - Distribution on walls and amounts of electrons.
 - Behavior of electrons inside lattice magnets.
- Ion Instability (Electron Ring)
 - Currently suppressed by feedback.
 - With electrons in LER, simulated initial growth rate faster than feedback damping rate, leading to dipole oscillation with amplitude of order of vertical beam size →possible loss of luminosity.
- Coherent Synchrotron Radiation (T.Agoh)

Lattice Design Beam Optical Parameters

		LER	HER	Unit
Horizontal emittance	\mathcal{E}_{χ}	24	24	nm
Beta function at IP	β_x / β_y	200/3	200/3	mm
Momentum compaction	α_{p}	2.7×10-4	1.8×10-4	
Momentum spread	$\sigma_{\!\delta}$	7.2×10-4	6.8×10-4	
RF voltage	V _c	15	20	MV
Bunch length	σ	3	3	mm
Synchrotron tune	V _s	0.031	0.019	

Lattice Parameters and Beam-Beam Effect (from Ohnishi)

		bare lattice	with beam-beam	unit
Beam current (LER/HER)	Ι	9.4/4.1	9.4/4.1	А
Beam energy (LER/HER)	Е	3.5/8.0	3.5/8.0	GeV
Emittance	ε _x	24	77	nm
Horizontal beta at IP	β_x^*	20	4.5	cm
Vertical beta at IP	β_y^*	3	2.3	mm
Horizontal beam size	σ_x^*	69	59	μm
Vertical beam size	σ_y^*	0.7	1.4	μm
Beam size ratio	$r = \sigma_y^* / \sigma_x^*$	1	2.4	%
Crossing angle	θ_{x}	0	0	mrad
Luminosity reduction	R _L	0.86	0.81	
ξ_x reduction	$R_{\xi x}$	0.99	0.97	
ξ_y reduction	$R_{\xi y}$	1.11	1.17	
Reduction ratio	$R_L^{}/R_{\xi y}^{}$	0.78	0.70	
Horizontal beam-beam (estimated with S-S simulation)	ξ _x	0.08	0.05	
Vertical beam-beam (estimated with S-S simulation)	Ęy	0.14	0.12	
Luminosity	L	2.5 x 10 ³⁵	2.5 x 10 ³⁵	cm ⁻² s ⁻¹

Lattice Design: the arc section

The beam-optical parameters can be adjusted to SuperKEKB <u>without</u> changing the lattice in the arc section.

KEKB lattice: 2.5π cell and non-interleaved chromaticity correction scheme.
 →Wide tunability of horizontal emittance, momentum compaction factor.
 →Principle nonlinearities in sextupole pairs cancelled out to give large dynamic aperture

Lattice Design: the IR section

Issues:

•QC1 normal or superconducting?

•Strong synchrotron light from QCS.

•Aperture

 \rightarrow need damping ring for positrons, at least.

Move final focus quadrupoles closer to IP for lower beta functions at IP. QCS and solenoid compensation magnets overlap in SuperKEKB. Rotate LER 8 mrad (total crossing angle of 30 mrad).

Vacuum parameters (SR related) for SuperKEKB

	LER	HER	Unit
Beam energy	3.5	8.0	GeV
Beam current	9.4	4.1	A
Bunch length	3	3	mm
# of bunches	5018 (with 2% abort gap)		
Bending radius	16.31	104.46	т
Bending angle	56.1		mrad
Half aperture	112		mm
Total SR power	7.65 (without wiggler)	14.21	MW
Max.line power density from SR	27.8 (~2 times higher)	21.6 (~4 times higher)	kW/m
Max.power density from SR	38.7(almost same as KEKB, ante-chamber)	<i>35.0 (2.4 times higher)</i>	W/mm ²
Critical SR energy	5.84	10.88	keV
Ave. photon density	1.21×10^{19} (4 times higher)	1.20×10 ¹⁹ (4 times higher)	/m/s
Ave. gas load	4.56×10 ⁻⁸	4.54×10 ⁻⁸	Pa m ³ /s/m

Vacuum parameters (HOM related) for SuperKEKB

	Loss factor <i>k</i> (<i>V</i> / <i>C</i>)	Length or # of components	Total <i>k</i> (V/C)	HOM power(kW)
Resistive wall	4.1×10 ⁹	2200 m	8.9×10 ¹²	1780
Pumping holes	8.8×10 ⁵	2200 m	1.9×10 ⁹	0.38
Flanges	1×10 ⁸	800	8×10 ¹⁰	16
Bellows	4×10 ⁹	800	3.2×10 ¹²	640
Photon mask	1×10 ⁴	800	8×10 ⁶	0.0016
Gate Valve	3×10 ⁹	16	4.8×10 ¹⁰	9.6
Movable mask	1×10 ¹²	16	1.6×10 ¹³	3200
Taper	3×10 ⁹	72	2.2×10 ¹¹	44

M dampers needed.

Vaccum components R&D

- Proposed basic designs for arc are:
 - Beam Duct:
 - Copper beam duct with an ante-chamber
 - Distributed pumping by NEG strips
 - Beam Inner surface with low SEY [e+] or/and solenoid
 - Bellows and gate valves:
 - With comb-type RF shield
 - Connection flange:
 - MO-type flange or conventional
 - RF bridge + vacuum seal
 - Movable mask (collimator)
 - New design with low impedance

NEG Strip

RF parameters for SuperKEKB

Parameters		LER	HER	Unit
Beam current	I _b	9.4	4.1	A
Energy loss/turn	U ₀	1.2	3.5	MeV
Loss factor	<i>k</i> _{total}	40	50	V/pc
Bunch length	σ_{z}	3	3	mm
Radiation loss power	P _{b,rad}	11.3	14.3	MW
Parasitic loss power	P _{b,para}	7.1	1.7	MW
Total beam power	P _{b,total}	18.4	16.0	MW
Total RF voltage	V _{c, total}	14.0	23.0	MV
RF frequency	f _{RF}	508.88	MHz	
Revolution frequency	f _{rev}	99.4		kHz
Type of cavities		ARES	ARES/SCC	
# of cavities		28	16/12	
Voltage/cavity	V _c	0.5	0.5/1.3	MV
Beam power/cavity	P _b	650	650/460	kW
Wall loss/cavity	P _c	233	150/-	kW
Detuning frequency	Δf_a	45	31/74	kHz
# of klystrons		28	16/12	
Klystron power	P _{kly}	930	850/480	kW
Total AC power		40	23/10	MW

•Required RF power provided to beam is four times as high as those of KEKB. But the required RF voltage is relatively low.

•Adopt the same RF frequency as KEKB and use the existing RF system as much as possible.

ARES Upgrade for Super-KEKB

HER: 4.1 A (N_b = ~5000, σ_z = 3mm) by 16 ARESs + 12 SCCs
ARES cavities of the current version. (KEKB 12ARESs+8SCCs)
LER: 9.4 A (N_b = ~5000, σ_z = 3mm) by 28 ARESs (KEKB 20 ARESs)
Remodel the A-cav part together with upgrading the HOM loads
The S-cav will be reused.

•8 or more sets of ARES cavities are needed to increase the beam current up to 9.4 A.

Super KEKB one ARES/klystron configuration

(KEKB: two ARES/one klystron)

The input power to each cavity will be nearly doubled.

The number of klystrons will be more than doubled. From Kageyama

Remodeling ARES Cavity (A-cav Part)

Increase k_a (the coupling factor between A-cav and C-cav) by enlarging the coupling aperture between A-cav and C-cav

Increase the stored energy ratio:

Upgrade HOM Waveguide Load

Upgrade GBP Load

KAGEYAMA, T. HL6, KEK, Nov. 16, 2004

Superconducting Cavity

- Input Coupler 380kw \rightarrow 460kW OK (test)
 - Coupler already tested more than 500kW(800kW in short time), beam test will be done.
- HOM Power 10 kW \rightarrow 60kW to be solved
 - HOM damper is most important issue for Super-KEKB SCC. Max Power of 40kW have been tested in air condition. High power test under high vacuum will be done.
- Add 4 Cavities
- If possible 4mm bunch length is help full reducing HOM problems and saving cost.

From Mitsunobu

Coupled-Bunch Instabilities due to RF Cavities

Item	Freq. (MHz)		LER	HER		Cure
		# of cav.	Growth rate (ms)	# of cav.	Growth rate (ms)	
		Ι	ongitudinal	modes		
ARES-HOM	1850	26	5	16	47	Bunch by bunch FB
SCC-HOM	1020			12	49	No need
Crab-HOM at LFM	655	2	41	2	214	No need
ARES 0/p modes	504	28	4	16	29	Bunch by bunch FB
Fundamental -1 mode	508.79	28	1.6	16+12	1	FB in RF control system
Fundamental -2 mode	508.69	28	20	16+12	21	FB in RF control system
Transverse modes						
ARES-HOM	633	28	4	16	33	Bunch by bunch FB
SCC-HOM	688/705			12	12	Bunch by bunch FB
Crab-HOM	773	2	4	2	12	Bunch by bunch FB

Crab crossing scheme

Palmer for LC (1988)

Oide and Yokoya for storage rings : Phys, Rev. A40, 315(1989)

Recent simulations by Ohmi showed significant increase of luminosity with crab crossing. It effectively creates a head-on collision.

Crab crossing in KEKB and Super-KEKB

	KEKB		Super-KEKB	
Ring	LER	HER	LER	HER
Beam energy (GeV)	3.5	8.0	3.5	8.0
Beam current (A)	2.6	1.1	9.4	4.1
Bunch length (mm)	7	7	3	3
RF frequency (MHz)	508	.887	508.	.887
Crossing angle (mrad)	±11		±15	
βx* (m)	0.6	0.6	0.2	0.2
βx, crab (m)	40	200	100~200	300~400
Required kick (MV)	1.47	1.51	1.10 ~ 0.78	1.45 ~ 1.26
Restore kick?	No (single kick)		Yes (both s	sides of IP)

Crab cavity in Super-KEKB • Possible problems for 10A with σ_{z} =3mm Large HOM power (300kW) to dampers. Growth rate can be higher than the radiation damping rate. • Improvements needed \rightarrow New design • Reduce the loss factor for σ_7 = 3mm. Much heavier damping of parasitic modes.

Two different types based on different methods to damp the accelerating mode (Lower Frequency Mode).

1) Coaxial couplers Type

(2) Waveguide damper Type

Other Components

Beam Position Monitors

Use same front-end electronics
 New button electrodes
 12 mm →6 mm diameter

-> Signal power matches dynamic range of existing front-end electronics.

Main Ring Magnets

•Outside of the IR, will largely reuse present KEKB magnets & power supplies.

Bunch-by-bunch Feedback system

- Transverse feedback similar to present design → Target damping time 0.2ms
 -Detection frequency 2.0→2.5 GHz.
 -Transverse kicker needs work to handle higher currents
 -Improved cooling, supports for kicker plates.
- •New general-purpose feedback signal processor under development at/with SLAC will be used.
- -Low noise, high speed (1.5 GHz), with custom filtering functions possible.
- -Extensive beam diagnostics.

Linac Upgrade Requirements

		KEKB		SuperKEKB
(1) Beam Energy	(e-)	8.0 GeV	>	3.5 GeV
	(e +)	3.5 GeV	>	8.0 GeV !
(2) Beam Intensity	y (e -)	1.0 nC x 1 bunches	>	2.5nC x 2 bunches !
	(e +)	0.6nC x 2 bunches	>	1.2nC x 2 bunches !
	-> wi	th 7-10 Tesla flux co	ncentra	tor in e+ capture section

(3) Smaller e⁺ emittance to fit for IR & C-band module apertures

-> e⁺ damping ring

(4) Faster e⁺/e⁻ mode-switching for Continuous e⁺/e⁻ Injection

-> separated e⁺/e⁻ beam lines

-> non-destructive beam monitoring

From Michizono

Linac Upgrade

Damping Ring

Positron emittance needs to be damped, to pass reduced aperture of C-Band section and to meet IR dynamic aperture restrictions.(e+ Injection)

		Unit	
Energy	1.0	GeV	
Number of bunch trains	2		
Number of bunches/train	2		
Bunch spacing	98	ns	
Bunch charge	2.56	nC	
Repetition frequency	50	Hz	
Circumference	131.3	m	
Energy loss per turn	73	keV	
Horizontal damping time	11.95	ms	
Injected-beam emittance	1.23	$\mu { m m}$	
Equilibrium emittance	12.2	nm	
Emittance at extraction	13.7	nm	Electron DR may be
Energy spread of injected beam	4.06×10^{-3}		
Bunch length of injected beam	6.05	$\mathbf{m}\mathbf{m}$	considered later to
Energy spread	5.29×10^{-4}		reduce injection
Bunch length	5.03	$\mathbf{m}\mathbf{m}$	backgrounds in physics
Bend-angle ratio of reverse-bend	0.35		detector.
Phase advance/cell	1.932	rad	
Momentum compaction factor	0.0019		
Number of normal-cells	40		

Summary

- SuperKEKB aims at a peak luminosity of 1-5×10³⁵ cm⁻² s⁻¹, a new luminosity frontier for colliders.
- The basic design work has been finished and a Letter of Intent was published this year (Edited by J.W.Flanagan and Y.Ohnishi,KEK Report 2004-4 June 2004).
- More simulation and intensive hardware R&D work towards SuperKEKB are ongoing.