Crab cavity: Cryostat

KEKB Crab Cavity R&D Group (presented by NAKAI Hirotaka)

KEKB Review Committee/20050221

Overview

- Design of cryostat
- Results of Numerical Analyses
 - Buckling

KEK

- Stress etc.
- Status of cryostat manufacturing
 - Magnetic shield
 - Frequency tuner
 - Vacuum vessel etc.

Cryostat Design Concept

- Jacket-type liquid helium vessel
 Coaxial coupler with bellows for frequency tuning: 28.3 kHz/mm
- Stub support for long coaxial coupler for mechanical support and cooling of coaxial coupler tip
- Jacket-type magnetic shield around cavity

NAKAI Hirotaka

4

Cryostat Design (Side View)

KEKB Review Committee/20050221

Cryostat Design (Top View)

KEKB Review Committee/20050221

NAKAI Hirotaka

6

Cryostat Design (Front View)

KEKB Review Committee/20050221

NAKAI Hirotaka

7

Heat Leak to Cryostat

Heat Transfer Mode	Heat Leak Path			Heat Leak [W]	
Theat Transfer Thoat				To 80 K Region	To 4 K Region
Conduction	Coaxial Coupler	Inner Conductor	Stainless Steel Tube		1.8
			Copper Plating		0.8
		Outer Conductor	Stainless Steel Tube	24.2	1.1
			Copper Plating	5.4	1.5
	Input Coupler	Outer Conductor	Stainless Steel Tube	13.0	1.0
			Copper Plating	3.2	1.9
	Beam Pipes	Beam Pipes	Stainless Steel Tube	41.2	1.9
			Copper Plating	6.9	1.9
	Tuner	Inner Rods (2 Rods)		1.4	0.1
		Outer Sleeves (2 Sleeves)		3.4	0.3
	Supports	Cavity Supports (4 Wires)		MH.	0.6
		80 K Shield Supports		KM M.	
	Plumbing	LHe Transfer Tubes (2 Tubes)			0.7
		Liquid Level Sensor Support		JT+T	0.6
		Safety Valve Plumbing		FLFT	
	Wiring	Thermocouples, Cables, etc.		TLFF	7 L +
Padiation	Vacuum Vessel to 80 K Shield			10.6	
Raulation	80 K Shield to LHe Vessel			TEAT	0.4
Total Amount of Heat Leak				109.3	14.6

KEKB Review Committee/20050221

Cavity Model for Analysis

KEKB Review Committee/20050221

Buckling Analysis of Cavity

1st Order Mode Buckling Load: 0.7772 MPa

2nd Order Mode Buckling Load: 0.8500 MPa

KEKB Review Committee/20050221

Helium Jacket Model for Analysis

Buckling Analysis of Helium Jacket

HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION

Test Stand for Frequency Tuner

Magnetic Shield (Jacket type)

Material: Permalloy, 3 mm thick

KEKB Review Committee/20050221

KEK

Copper Bellows

KEKB Review Committee/20050221

Copper Bellows

KEK

80 K Thermal Shield

KEKB Review Committee/20050221

Vacuum Vessel

End Shell Hydroforming

KEKB Review Committee/20050221

HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION Assembled End Shell

KEKB Review Committee/20050221

KEK

Summary

- Cryostat design almost completed and numerically analyzed
- Prototype cryostat for assembly check and cooling test under construction
- Parts Fabrication in Progress

KEK