

SuperKEKB Lattice and Dynamic Aperture

Y. Ohnishi KEK

KEKB Machine Advisory Committee Feb/21-23 2005

Introduction

- Concept of lattice design in Super KEKB is the same as the KEKB lattice.
- Non-interleaved sextupole scheme is successfully working in KEKB.
 - Chromaticity correction with reducing nonlinearities
 - Sextupole bumps are used for optics corrections.
- Lattice of interaction region(IR) is different from KEKB.
 - Very small beta function at IP (β_x^*/β_y^* = 20 cm /3 mm)
 - Finite crossing angle is 30 mrad.
- Half of wigglers are replaced with RF cavities in LER.
 Damping time becomes longer. (43 msec→~56 msec)
- We need to check lattice performance of SuperKEKB.
 - Tracking simulations includes machine errors and optics correction
 - Dynamic aperture (injection, lifetime)

Machine parameters of SuperKEKB

	Symbol	LER	HER	Unit
Luminosity	L	2.5x10 ³⁵		cm ⁻² s ⁻¹
Energy	E	3.5	8.0	GeV
Beam current	I	9.4	4.1	А
No. bunches	n _B	5018		
Emittance	ε _x	24		nm
	β_x^*	20		cm
	β_{y}^{*}	3		mm
Bunch length	σ_{z}	3		mm
Momentum compaction	$lpha_{ m p}$	3x10-4		
RF voltage	V _c	14	23	MV
Betatron tune	v_{x}	45.506	44.515	
	ν _y	43.545	41.580	
Synchrotron tune	\mathbf{v}_{s}	0.031	0.019	
Beam-Beam	ξ _y	0.14		
Crossing angle	θ	30→0 (crab crossing) m		mrad

Lattice Parameters and Beam-Beam Effect

	Symbol	bare lattice	with beam-beam	unit	
Beam current (LER/HER)		9.4/4.1		A	
Beam energy (LER/HER)	E	3.5/8.0		GeV	
Emittance	ε _x	24	77	nm	
Horizontal beta at IP	β_x^*	20	4.5	cm	
Vertical beta at IP	β_y^*	3	2.3	mm	
Horizontal beam size	σ_x^*	69	59	μm	
Vertical beam size	σ_y^*	0.7	1.4	μM	
Beam size ratio	$r = \sigma_y^* / \sigma_x^*$	1	2.4	%	
Crossing angle	θ_{x}	0	0	mrad	
Luminosity reduction	RL	0.86	0.81		
ξ_x reduction	R _{şx}	0.99	0.97		
ξ_{y} reduction	R _{ξy}	1.11	1.17		
Reduction ratio	R_L/R_{gy}	0.78	0.70		
Horizontal beam-beam (estimated with S-S simulation)	Ęx	0.08	0.05		
Vertical beam-beam (estimated with S-S simulation)	ξ _y	0.14	0.12		
Luminosity	L	2.5 x 10 ³⁵		cm ⁻² s ⁻¹	

Non-Interleaved 2.5 π Sextupole Scheme (NISS)

- Emittance and momentum compaction factor can be adjusted independently.
 - 7 families of quadrupole in a cell. (4 for -I, 2 for emittance and momentum compaction factor, 1 for phase advance)
- Sextupole pair is connected by -I'.

$$-I' = \begin{pmatrix} -1 & 0 & 0 & 0 \\ m_{21} & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & m_{43} & -1 \end{pmatrix}$$

Chromaticity can be corrected with canceling nonlinearities in each sextupole pair.

Large dynamic aperture is expected.

Non-Interleaved 2.5 π Sextupole Scheme (NISS)

Lattice errors can be corrected by sextupole displacement.

Horizontal displacement of sextupole generates quadrupole element and vertical displacement generates xy-coupling.

$$\begin{pmatrix} \Delta x' = -\frac{K_2}{2} (x^2 - y^2) - (K_2 \Delta x_{sext}) x - (K_2 \Delta y_{sext}) y \\ \Delta y' = K_2 x y + (K_2 \Delta x_{sext}) y + (K_2 \Delta y_{sext}) x \\ Quad. & Skew \\ element & element \end{cases}$$

Sextupole magnet has a mover which can transversely move the magnet.

NISS Arc Lattice

Computer Simulations

SAD: SAD is a computer program complex for accelerator design. It has been developed in KEK and used at KEKB. (<u>http://acc-physics.kek.jp/SAD/sad.html</u>)

- Machine errors:
 - The errors are assumed to be Gaussian distribution with a cut-off of 3σ .

LER is considered to estimate tolerc	ance of machine errors.
--------------------------------------	-------------------------

	alignment error		rotation error	gradient error
	Δx (μm)	Δy (μm)	Δθ (mrad)	Δk/k
Bend	100	100	0.1	10-4
Quadrupole	100	100	0.1	10-4
Sextupole	100	100	0.1	10-4
Steering	100	100	0.1	10 ⁻³

Lattice errors are corrected by sextupole movers, skew quadrupoles and field gradient of quadrupoles.

Beta Correction

Dispersion Correction

Sextupole Mover

- Maximum stroke of ±3 mm is necessary for sextupole movers to correct optics.
- Sextupole local bumps are not available for SuperKEKB to keep synchrotron light path in the ante-chamber.

Dynamic Aperture in LER

Required Acceptance for Injected Beam

		LER 3.5 GeV		HER 8 GeV		
e+	e+	e⁻	e+	e+	e⁻	
NO	YES	-	NO	YES	-	
7.5	1.8	2.6	4.5	1.5	1.9	
1.2	0.056	0.18	0.52	0.025	0.08	
16	3	7	12	2	4	
		Energy Switch	Energy Switch	Energy Switch		
	NO 7.5 1.2 16 e+ dan	NO YES 7.5 1.8 1.2 0.056 16 3	NO YES - 7.5 1.8 2.6 1.2 0.056 0.18 16 3 7 Energy Switch e+ damping ring is assume	NOYES-NO7.51.82.64.51.20.0560.180.52163712Energy SwitchEnergy Switch	NO YES - NO YES 7.5 1.8 2.6 4.5 1.5 1.2 0.056 0.18 0.52 0.025 16 3 7 12 2 Energy Switch Energy Switch Energy Switch	

Dynamic Aperture for Injected Beam

Dynamic aperture satisfies injected beam.

Tracking Simulation with Beam-Beam Effect

Beam-beam kick is given by Bassetti-Erskine formula.

 $x' \rightarrow x' + \Delta x', y' \rightarrow y' + \Delta y' \text{ at I.P}$

$$\Delta x' = -\frac{N_{-}r_{e}}{\gamma_{+}}F_{x}(x, y, \sigma_{x}^{*}, \sigma_{y}^{*}) \qquad \text{LER}$$

$$\Delta y' = -\frac{N_{-}r_{e}}{\gamma_{+}}F_{y}(x, y, \sigma_{x}^{*}, \sigma_{y}^{*}) \qquad \text{(e}^{+}y$$

$$F_{x}(x, y, \sigma_{x}^{*}, \sigma_{y}^{*}) - iF_{y}(x, y, \sigma_{x}^{*}, \sigma_{y}^{*}) = -i\sqrt{\frac{2\pi}{\sigma_{x}^{*2} - \sigma_{y}^{*2}}}$$

$$\times \left\{ w\left(\frac{x + iy}{\sqrt{2(\sigma_{x}^{*2} - \sigma_{y}^{*2})}}\right) - \exp\left(-\frac{x^{2}}{\sigma_{x}^{*2}} - \frac{y^{2}}{\sigma_{y}^{*2}}\right) w\left(\frac{\frac{\sigma_{y}^{*2}}{\sigma_{x}^{*2}} + i\frac{\sigma_{x}^{*2}}{\sigma_{y}^{*2}} + i\frac{\sigma_{y}^{*2}}{\sigma_{y}^{*2}} +$$

Tracking simulation is "Weak-Strong".

-2

-4

0

2

-8

-10

-6

Demonstration of beam-beam kick with tracking

10

8

y offset (µm)

6

Dynamic Aperture with Beam-Beam Effect

Case $\xi_v = 0.14$, dynamic aperture shrinks in large momentum deviation for LER.

- Transverse aperture decreases in HER due to beam-beam effect.
- Touschek lifetime with beam-beam($\xi_v = 0.14$): 50 min in LER / 180 min in HER

Lifetime

ltem	LER	HER	
Quantum lifetime	very long		
Vacuum lifetime	~10 hours		
Luminosity lifetime	170 min	70 min	
Touschek lifetime for single beam (J _y /J _x =2%)	75 min	320 min	
Touschek lifetime with beam-beam (J _y /J _x =2%)	50 min	180 min	
Total (collision lifetime)	40 min	50 min	

To keep CIM, 40 nC Hz/pulse injection for LER, 14 nC Hz/pulse for HER are needed at least.

Summary

- Non-interleaved sextupole scheme(NISS) is applied to SuperKEKB lattice.
- Tolerance of machine errors and optics correction
 - Sextupole mover is important to make optics correction.
- Dynamic aperture satisfies the requirement of injected beam in both rings.
- Dynamic aperture with beam-beam effect
 - Momentum aperture decreases in LER, transverse aperture decreases in HER.
 - Lifetime(beam-beam) : 50 min (LER) / 180 min (HER)
- Sextupole optimization still needs improvement.
 - Local chromaticity correction in HER

Luminosity Formula

Luminosity expressed by Beam-Beam parameters ($\gamma_{e+}N_{e+} = \gamma_{e-}N_{e-}$)

When $\xi_x/r\beta_x^* = \xi_y/\beta_y^*$, luminosity is maximum and

$$L = \frac{\gamma_{e\pm}}{2er_e} (1+r) \left(\frac{I_{e\pm} \xi_y}{\beta_y^*} \right)$$

Luminosity expression used in machine design

Flat beam: r ~ O(1%)

$$L \propto \frac{I_{e\pm}\xi_y}{\beta_y^*}$$

r

Geometrical Reductions to Luminosity

Geometrical reduction to luminosity: R_L

$$L \rightarrow L = \frac{N_{e+}N_{e-}f}{4\pi\sigma_x^*\sigma_y^*}R_L \qquad R_L = \frac{a}{\sqrt{\pi}}e^b K_0(b) \qquad b = \frac{a^2}{2}\left[1 + \left(\frac{\sigma_z}{\sigma_x^*}\tan\frac{\theta_x}{2}\right)^2\right]$$

modified Bessel

Geometrical reduction to beam-beam parameter: R_{εν}

$$\xi_{y,e\pm} \rightarrow \xi_{y,e\pm} = \frac{r_e N_{e\mp} \beta_y^*}{2\pi \gamma_{e\pm} \sigma_y^* (\sigma_x^* + \sigma_y^*)} R_{\xi y} \qquad R_{\xi y} = \int dz' \rho(z') \sqrt{1 + \left(\frac{S}{\beta_y^*}\right)^2} f_y \left(z' \tan \frac{\theta}{2}, \sigma_x^*, \sigma_y^*\right)$$

Montague's function

Luminosity expression used in machine design: R_L/R_{gy}

$$L \rightarrow L = \frac{\gamma_{e\pm}}{2er_e} (1+r) \left(\frac{I_{e\pm} \xi_y}{\beta_y^*} \right) \left(\frac{R_L}{R_{\xi y}} \right)$$

Beam-Beam simulation using Supercomputer

Positron beam

