Estimation of Loss Factors of Various Vacuum Components

22/Feb/2004 K. Shibata (KEKB Vacuum Group)

Contents

Lintroduction

- **Q** Estimation of loss factors for KEKB and SuperKEKB
 - **Q** Pumping port
 - Photon mask
 - Connection flange
 - Section 2018 Movable mask
 - Bellows

Comparison with measured loss factor (KEKB LER)

- **Solution** Improvement for SuperKEKB
- 🔍 Summary

▲Upgrade to SuperKEKB

Substitution Components Considered here

- Pumping port
- 오 Photon mask
- Connection flange
- 🗣 Movable mask
- Bellows chamber

Method of estimation of loss factor

MAFIA T3 simulation code

Loss factor and HOM power will

Some vacuum components of

KEKB need to be improved.

increase.

Pumping Port – KEKB LER

Features

 "Hidden holes" structure
 10 slots / 1 pumping port
 Long slot in the beam-axis direction Length : 100 mm, Width : 4 mm
 1800 pumping ports / 1 ring

Pumping Port – SuperKEKB

Features

- Pumps are equipped on the upper and lower sides of the SR channel.
- The pump channels are connected through many holes with typical diameters of 4 mm.
- Loss factor ($\sigma_z = 3 \text{ mm}$)

 $k(3mm)/L = 8.8 \times 10^{5} [V/C/m]$

↓ × ~2000 [m] Total : *k*(3mm) ≈ 0.002 [V/pC]

Pumping slots (holes) have little effect on the beam.

Photon Mask

Loss factor for SuperKEKB is negligible small.

Connection Flange - KEKB

Features

- Helicoflex gasket
 - Same inner diameter as a beam duct
 - Double role of vacuum seal and rf bridge
- 2000 connections / 1ring

Connection Flange - SuperKEKB

- Connection of antechamber
 - It is difficult to use conventional connection flange.
- 𝔍 MO-type Flange
 - Features
 - Developed for C-band wave guide
 - Smooth inner surface
 - Possibility with antechamber type aperture
 - Promising results were obtained.
- Loss Factor (σ_z =3 mm, 0.2 mm steps) ■ *k*(3 mm) < 6.8×10⁷ [V/C] ■ × 2000

Total: *k*(3 mm) < 0.1 [V/pC], *P*_{HOM} < 4.4 [kW]

The loss factor of MO-type flange is much less than conventional one.

• Movable mask with reduced HOM design (KEKB)

Features

A device to reduce the background noise in Belle detector

Wall of the bent chamber has the function as a mask head.

- 16 movable masks / 1 ring
- Large loss factor

Strong HOM is excited at the mask head where the beam passes of center of the beam chamber.

Loss Factor

It is difficult to use this movable mask at SuperKEKB.

Movable Mask - SuperKEKB

- Proposal: Invisible Movable Mask (still only an idea)
- Small mask head supported by ceramics and HOM absorber
 Head is fixed to chamber.
 - Position is adjusted by moving the chamber.
 - SiC absorber is combined to damp HOM excited at the mask head.

Bellows – KEKB

Bellows chamber with a finger-type RF shield
Structure

Loss Factor

Bellows - SuperKEKB

Sellows chamber with a comb-type RF shield

Features

- RF shield : nested comb teeth Length: 10 mm, Width: 1 mm Radial thickness: 10 mm,
- High thermal strength
- No radial step on the inner surface
- Loss Factor (estimated by MAFIA T3)

•
$$k(3 \text{ mm}) = 4.1 \times 10^9 [\text{V/C}]$$

• 1000
Total : $k(3 \text{ mm}) = 4.1 [\text{V/pC}]$
 $P_{\text{HOM}} = 707 [\text{kW}]$

k(3mm) reduces to ~40 %.

Comparison with measurement in KEKB LER - 1

• Estimation ($\sigma_z = 4$ mm)

• Total loss factor : $k(4mm) = 60 \sim 62 + \alpha V/pC$

Component	k [V/C]	Number of items	Total <i>k</i> [V/pC]	
Resistive wall	1.5×10 ⁹	2200 [m]	3.2 🣛	Formula
Pumping port	2.0×10 ⁹	1800	3.6 🣛	Calculation(4mm)
Flange	5.1×10 ⁸	2000	1.0	Calculation(4mm)
Bellows	6.3×10 ⁹	1000	6.3 🦕	Calculation(4mm)
Photon mask	4.6×10 ⁹	1000	4.6	Design report
Gate valves	1.0×10 ¹⁰	30	0.3	Calculation(4mm)
Movable mask (ver.1)	1.2×10 ¹² +α'	16	19.2 + α 🛑	Calculation(4mm)
IR chamber	2.9×10 ¹¹	1	0.29	Design report
Mask at IP	8.0×10 ¹⁰	1	0.08	Design report
Recomb. Chamber	1.6×10 ¹²	1	1.6	Design report
Dummy chamber for Crab cavity	1.8×10 ¹²	2	3.2 ~ 4.0	Measurement(6mm)
Cavity (ARES)	8.3×10 ¹¹	16	13.3 📛	Design report
BPM	2.0×10 ⁹	400	0.8	Design report
Feedback system	3.2×10 ¹²	1	3.0 ~ 3.8 🦾	Calculation(6~7 mm)

Comparison with measurement in KEKB LER - 2

• Measurement \approx Estimation 87±30 V/pC 60~62 + α V/pC

Measured loss factor agrees with estimated loss factor.

Improvement for SuperKEKB

• Loss factor and HOM power ($\sigma_z = 4$ mm)

	KEKB (design) (σ_z =4 mm, <i>I</i> =2.6 A, n_b =5000)		SuperKEKB (σ _z =4 mm, <i>I</i> =9.4 A, n _b =5000)	
Components	<i>k</i> [V/pC]	P _{HOM} [kW]	<i>k</i> [V/pC]	P _{HOM} [kW]
Resistive wall	3.2	43	3.2	971
Pumping port	3.6	49	Negligible	Negligible
Flange	1.2	14	0.01	2.0
Photon mask	4.6	62	Negligible	Negligible
Bellows	6.3	85	1.96	346
Gate valves	0.3	4	0.06	10
Movable mask	19.2+ α	260+ α	1.5+ α	269+ α
Total	38+ α	517+α	6.8+ α	1200+α

Loss factor reduces to ~18 % for a 4 mm bunch length.

Other components

IR chamber, IP mask, Recomb. chamber, Cavity, Crab cavity, Feedback system, BPM, etc.

Summary

 Estimation of the loss factors of the vacuum components of KEKB and SuperKEKB

Comparison between estimation and measurement in KEKB (2000)

- Stimation ≈ Measurement
- Improvement for SuperKEKB
 - Loss factor of improved vacuum components for a 4 mm bunch length reduces to 18%. (if everything goes well.)
- Future
 - Settimation of all other components
 - Investigation of the beam instabilities