Tungsten mono-crystalline target for a high-intensity positron source

T.Suwada (tsuyoshi.suwada@kek.jp) Accelerator Laboratory, KEK

Motivation

- High-intensity positron sources are required for future *linear colliders* and *B-factories*.
- Conventional methods using amorphous heavy metals limit to increase the intensity of primary electron beams due to the heat load on the target.
- New method using a *mono-crystalline target* for positron production is expected to be one of the bright schemes for high-intensity *e*⁺ sources.

Introduction

• New method utilizing a crystal target was proposed by Chehab, *et al.* in 1989.

(R. Chehab, et al., PAC'89, Chicago, IL, USA, Mar. 1989, p.283)

• Yoshida, *et al.*, demonstrated a clear enhancement of the *e+* yield in a tungsten crystal target using a 1.2-GeV electron beam of INS/Tokyo.

(K. Yoshida, et al., Phys. Rev. Lett. 80, 1437, 1988)

- However, any theoretical studies taking into account both processes of *Channeling Radiation (CR)* and *Coherent Bremsstrahlung (CB)* has not yet been established on the simulation.
- More experimental data are expected to clearly understand the physical interaction processes of the *CR* and *CB*.

Channeling Radiation & Coherent Bremsstrahlung Processes

New Positron Production Schemes

Experimental Setup

Linac Beam Line at the 3rd switch yard

Experimental Setup (cont'd):Positron spectrometer

Acceptance of the Positron Spectrometer

P_{e^+}	Acceptance $(\Delta P \Delta \Omega)$		
$\left(\mathrm{MeV}/\mathrm{c}\right)$	$(10^{-4}{\times}({\rm MeV/c}){\cdot}{\rm sr})$		
5	1.08 ± 0.03		
10	2.47 ± 0.07		
15	3.80 ± 0.01		
20	4.81 ± 0.12		

- The acceptance (ΔP Δ Ω) was obtained by using the simulation code (GEANT3).
- Typical acceptance Momentum: $\Delta P/P=2.4\%$ (FWHM)& Geometrical: $\Delta \Omega=1msr$ at P_{e+}=20MeV/c.

Experimental Condition

Electron Beam: S-band single bunch

- Beam Energy = 4 (8) GeV
- Angular Spread ~123(23) µrad (H), ~121(41) µrad (V)
- Transverse Beam Size 1 ~1.5mm (FWHM) in diameter
- Beam Charge = 0.2 nC/bunch
- Bunch Length (Single Bunch) ~10 ps (FWHM)
- Beam Repetition = 25(2)Hz

Angular Spread of the Electron Beam at the Positron Target

Φ ~ 0.2(0.1) mrad < Φc (due to multiple scattering by a vacuum window(100µm-thick SUS))

Critical Angle for the Channeling Condition at the Positron Target

• $\Phi c \sim 0.61(0.43) \text{ mrad } @4 \text{ and } 8 \text{ GeV} (Linhard Angle)$

Experimental Condition (cont.)

Positron-Production Targets:

- Crystal Tungsten Target : 2.2, 5.3 and 9mm thickness
- Amorphous Tungsten Target : 2-28mm thick (for the *e*⁺ production yield calibration)
- Amorphous Tungsten Target: 3-18mm (3mm step) thickness (for the purpose of hybrid targets)

Detected Momentum Range

• 5 MeV/c $\leq Pe^+ \leq 20$ MeV/c

Positron Detectors

•Lead-Glass Calorimeter:Measurement of total energy of e+

•Acrylic Cherenkov Counter:Measurement of number of e+ Beam Monitors

- •*Wall-current monitor* for the electron beam-charge measurement
- •Screen monitor for the beam-profile measurement

Experimental Results: Rocking Curves (Crystal Axis <111>) at Ee=4 and 8 GeV (Pe+=20MeV/c)

Experimental Results: Variations in the width of the rocking-curve peak for Ee-=4 and 8 GeV (Pe+=20MeV/c)

Experimental Results: Variations in the enhancement ($N_{e+@peak}/N_{e+@base}$) of the e+ yield at Ee=4 and 8 GeV (Pe+=20MeV/c)

Experimental Results: Momentum dependence of the positron-yield enhancement

Table 2

Momentum dependence of the positron-yield enhancement for the crystal targets. () are the simulation results by Baier and Strakhovenko [13]

P_{e^+}		$E_{e^-}{=}4~{\rm GeV}$			$E_{e^-}{=}8~{\rm GeV}$	
$({\rm MeV/c})$	$2.2\mathrm{mm}~W_{\pmb{c}}$	5.3mm $W_{\boldsymbol{c}}$	9.0mm $W_{\pmb{c}}$	$2.2\mathrm{mm}~W_{c}$	5.3mm $W_{\boldsymbol{c}}$	9.0mm $W_{\pmb{c}}$
5	3.3 ± 0.1	2.2 ± 0.1	1.5 ± 0.2	5.0 ± 1.5	2.9 ± 0.5	2.1 ± 0.3
10	3.6 ± 0.3	2.3 ± 0.1	1.5 ± 0.2	6.5 ± 0.6	3.4 ± 0.7	2.3 ± 0.4
				(6.0 ± 0.5)	(3.2 ± 0.3)	(2.1 ± 0.2)
15	3.5 ± 0.1	2.2 ± 0.1	1.7 ± 0.3	6.2 ± 0.8	3.2 ± 0.5	2.0 ± 0.2
				(5.5 ± 0.3)	(3.2 ± 0.2)	(2.0 ± 0.1)
20	3.7 ± 0.1	2.2 ± 0.1	1.5 ± 0.1	5.1 ± 0.5	3.0 ± 0.5	1.8 ± 0.2
				(5.4 ± 0.2)	(2.9 ± 0.1)	(1.8 ± 0.1)

Suwada, et al., Phys.Rev.E 67, 016502 (2003) Feb. 21-23, 2005

16

Experimental Results: e+ production efficiencies for the crystal and combined targets at Ee-=4 and 8 GeV (Pe+=20MeV/c)

Conclusions

A Rocking curves

- The obtained widths of the rocking-curve peak is much larger than the critical angle, and broaden with the thickness of the crystal target.
- The broad widths of the rocking curves indicate that the CB process may be predominant over CR process in this energy region.
- The increase of the peak width depending on the target thickness may come from the multiple scattering of the incident electrons in the target.
- ♠ Enhancement of the e⁺ yield @Pe+=20MeV/c
- 4GeV *En*=3.7 ±0.1 (2.2mm), 2.2 ±0.1 (5.3mm), 1.5 ±0.1 (9mm)
- 8GeV *En*=5.1 ±0.5 (2.2mm), 3.0 ±0.5 (5.3 mm), 1.8 ±0.2 (9mm)

A Positron production efficiency for the crystal targets

- The absolute e+ yields were enhanced by ~26% with Pe+=20MeV/c by 15 and 18% on the average with the momentum range of 5-20MeV/c at Ee-=4 and 8GeV, respectively, compared with the maximum e+ yield obtained for the amorphous target.
- We have a new plan to install a tungsten mono-crystalline target at the present e+ source in this summer.