HOM damper for CRAB Cavity

Yoshiyuki Morita CRAB cavity KEKB

HOM damper

- Damp HOM (>600 MHz) and LOM (400 MHz)
- Ferrite damper
 - Developed for KEKB superconducting accelerating cavity
 - HIP (Hot Isostatic Press) : 1500 atm, 900 °C
- Size: 240 \u00f6 x 120 mm, 4t
 - Almost the same size of SBP damper used for accelerating cavity
- Expected RF load at 1.6 A, 1500-bunch
 - LBP: 15 kW
 - Coaxial: 4 kW
- Need 4 dampers and 2 spares
 - 9 dampers HIPped, 6 dampers fabricated

Fabrication of HOM dampers

- Baking of ferrite powder
- Canning of ferrite powder
- HIP 1500 atm, 900 °C
- Machining of ferrite surface
- UT
- <u>Baking</u>
- Cutting of iron base
- EBW of stainless steel flange
- Winding of copper pipe
- <u>High power test</u>: up to 10 kW
- <u>Low power test</u>: mode damping test
- Evacuation

Before Baking

Before high power test

UT

UT

Baking stand

Temperature vs. pressure

Out gassing rate: $6 \times 10^{-10} \text{ torr } \text{L/s } \text{cm}^2$

High power test stand

High Power Test

Absorbed Power

Up to 10 kW Evaluated by cooling water temperature rise

High Power Test

Ferrite temperature

Measured by radiation thermometer

Cycle test

#4 damper experienced 300 kW

Heard cracking sounds

This is the first evidence that the damper has cracks by RF power

Low Power Test

Transmission property

2000 MHz. Transmission property S21 was calculated using HFSS for several thickness of the ferrite 0 (nominal thickness: 4 mm). -1 agrees with measured data. -2 measured S21 (dB) **-** 4t -3 **-** 3.5t S21 calculation using HFSS 3t -4 -5 -6 500 1000 1500 2000 2500 0 Frequency (MHz)

S21 was measured from 400 MHz to

Simulation with the thickness of 3.5t

Mode damping of the model cavity

Mode damping of the model cavity

Transmission property of the model cavity with/without the HOM damper. The LOM and HOMs are sufficiently damped. Q factor of the TE111 is still high, because of its weak coupling to the coupler.

Comparison with simulation

Frequencies and Q factors of several modes. HFSS simulation agrees with measured data.

	HFSS		Measured	
mode	f (MHz)	Q	f (MHz)	Q
TM110	402	53	400	47
Crab	513	211	515	227
TM310	680	52	684	70
TM410	830	162	839	165
TE111	863	1546	871	1424
TM510	993	82	1000	49

Evacuation

Crack mapping

A map of cracks was made after cracking using a micro-scope #4 damper was high power tested and cycle tested again Cracks were inspected once again No significant growth of cracks was found

Cracks before and after the cycle test

Pictures taken before/after the cycle test

Before

Pictures taken before/after the cycle test These pictures show no growth of cracking

Expected RF power load of LBP damper

Summary

- 4 dampers and 2 spares have been fabricated and tested
- High Power Test
 - 10 kW absorbed (1500-bunch, 1.3 A)
 - Cycle test (0 10 kW, 20 cycles)
 - No damage
- Low Power Test
 - Transmission property test
 - Agreed with simulation
 - Mode damping test using a model cavity
 - Sufficient damping achieved
- Evacuation
 - #1, #2,#3: 5 x 10⁻¹¹ torr l/sec cm²
- #1,#2: Assembled
- #4 : Cracks
 - Still can be used High power test >10 kW