PEP-II Status

Yunhai Cai

March 22, 2006 KEK

KEKB MAC Meeting

Parameters	Description(10/4/05)	LER(e ⁺)	HER(e ⁻)	
E(Gev)	beam energy	3.1	9.0	
N _b	bunch population	7.783x10 ¹⁰ (1.70 mA)	4.585x10 ¹⁰ (1.00 mA)	
$\beta_{x}^{*}(cm)$	beta x at the IP	40	35.0	
$\beta_y^*(cm)$	beta y at the IP	1.08	1.08	
$\epsilon_x(nm-rad)$	emittance x	33.0	55.0	
ε _y (nm-rad)	emittance y	1.50	1.30	
ν _x	x tune	0.5250	0.5160	
vy	y tune	0.5790	0.6223	
ν _s	synchrotron tune	0.032	0.049	
$\sigma_{z}(cm)$	bunch length	1.25	1.15	
σ _p	energy spread	6.5x10 ⁻⁴	6.1x10 ⁻⁴	
$\tau_{t}(turn)$	transverse damping time	9800	5030	
τ _l (turn)	longitudinal damping time	4800	2573	

Peak Luminosity October 10, 2005 (I+=2940mA, I==1733mA, n_b=1732)

Data taken in the history buffer for a 24 hours period. The simulation used an approximately fixed current ratio.

Specific Luminosity October 10, 2005 (I+=2940mA, I-=1733mA, n_b=1732)

Data taken in the history buffer for a 24 hours period. The simulation used an approximately fixed current ratio.

Projected Luminosity: 2E34 cm⁻²s⁻¹ in 2007

- HER 90⁰ lattices to lower momentum compaction factor and beam emittance
- Low-beta optics near $\beta_v^* = 8 \text{ mm}$
- Use wiggler in the LER as a damping wiggler
- More RF stations in the HER, LER?
- More currents 4000/2200 mA in the machine
- Shorten the bunch length to 9 mm
- Adequate dynamic aperture to ensure a good beam-beam lifetime

Parameters	Description(2007)	LER(e ⁺)	HER(e ⁻)	
E(Gev)	beam energy	3.1	9.0	
N _b	bunch population	1.066x10 ¹¹ (2.325 mA)	5.865x10 ¹⁰ (1.279 mA)	
$\beta_{x}^{*}(cm)$	beta x at the IP	30	30	
$\beta_y^*(cm)$	beta y at the IP	0.85	0.80	
$\epsilon_x(nm-rad)$	emittance x	30.0	40.0	
$\epsilon_y(nm-rad)$	emittance y	1.20	1.80	
ν _x	x tune	0.5162	0.5203	
vy	y tune	0.5509	0.6103	
ν _s	synchrotron tune	0.0381	0.049	
$\sigma_{z}(cm)$	bunch length	0.95	0.90	
σ _p	energy spread	6.5x10 ⁻⁴	6.1x10 ⁻⁴	
$\tau_t(turn)$	transverse damping time	8424	5030	
$\tau_{l}(turn)$ longitudinal damping time		4128	2573	

Projected Luminosity: 2E34 cm⁻²s⁻¹

Recent Activities

- PEP-II has been limited by the vacuum bursts near the interaction region since the beginning of this year.
- The stable beam currents below 1550mA/1250mA. The luminosity is limited at half of its maximum reached value.
- The exact cause of the problem is unknown. The most popular suspect is the tiles used as HOM absorbers. The replacement of those vacuum chambers are underway.
- Since the beam currents, we are trying to make progress to improve specific luminosity.

Four Orthogonal Orbits Extracted Using FFT (Yiton Yan)

R-Matrix Elements and Orbits

$$\begin{aligned} R_{12}^{ab} &= \left(x_1^a x_2^b - x_2^a x_1^b\right) / Q_{12} + \left(x_3^a x_4^b - x_4^a x_3^b\right) / Q_{34} \\ R_{14}^{ab} &= \left(y_1^a x_2^b - y_2^a x_1^b\right) / Q_{12} + \left(y_3^a x_4^b - y_4^a x_3^b\right) / Q_{34} \\ R_{32}^{ab} &= \left(x_1^a y_2^b - x_2^a y_1^b\right) / Q_{12} + \left(x_3^a y_4^b - x_4^a y_3^b\right) / Q_{34} \\ R_{34}^{ab} &= \left(y_1^a y_2^b - y_2^a y_1^b\right) / Q_{12} + \left(y_3^a y_4^b - y_4^a y_3^b\right) / Q_{34} \end{aligned}$$

where *a* and *b* are indices for the locations of the beam position monitors, Q_{12} and Q_{34} are invariant amplitude of the orbits.

J. Irwin and Y.T. Yan, Proc. The 7th EPAC p151, (2000)

Beta Beating Correction in the HER Feb. 16, 2006

- Reduce the beta beating in the HER from 250% to 15%
 - Predicted the correction with an accurate model using MIA and LEGO
 - Tweaked single quadrupole: QF5L by +0.225%
 - Moved closer to half integer v_x =0.516
- Reduced coupling in the HER within several hours, compared with several days, using MIA
 - Reached specific luminosity of 4.0
 - Tweak of skew quadrupoles for additional 15% gain

Prediction from MIA/LEGO Model

Horizontal tune is fixed with tune trombones back to 0.516.

Comparison of β Functions

Actual tweak of QF5L was twice larger than predicted.

Chromatic Optics for the HER Feb. 16, 2006

- Measured chromatic optics and dynamic aperture in HER
 - Excellent agreement between measurements and LEGO model in the chromatic optics
 - Improvement of understanding of nonlinear dynamics including sextupoles

J. Yocky, P. Raimondi

Built Beam-Based Online Model for HER Within Four Hours (March 7, 2006, Mark Woodley and Yiton Yan)

Steering in LER March 9, 2006

Before:

and After:

J. Turner, J. Yocky, F.J. Decker, please note that the scaled was reduced by a factor of two.

Beta Beating and Coupling Correction After the Steering

Summary of Achievements

- Built fast and accurate online model in several hours and the model is used in the control room
- Developed and tested correction schemes to correct beta beating and coupling in arcs
- Reduce the amplitude of orbit by at least a factor of two in the LER
- Reduced the beta beating in both machine below to 20%
- Developed a systematic and orthogonal procedure to correct optics after a major change of lattice
 - IR match using MIA
 - Arcs correction using MIA->LEGO
 - Beta beating
 - Dispersions
 - Coupling
- Nearly all milestones set by the end of March were reached
- Most important, we worked at a term for a common goal

Beam-Beam Scan After the Steering, Mike Sullivan, March 11, 2006

The best specific luminosity is 5.4x10³⁰ cm⁻²s⁻¹mA⁻². Σ_y is 6.45 um.

Vertical Beam Size at SXM

HISTORY LX60:GAUSS:MINOR:WIDTH

INTERV	/AL:	180	MEAN:	.24949	MIN:	0.0000
LAST	DATA	POINT:	13-MAR-2006	08:46:51	MAX: MAX-MIN:	.66693
					13-MAR-06 08:	49:57

Vertical Dispersions in the LER

We need to reduce the vertical dispersion as soon as possible.

Vertical Anti-Symmetric Bumps

20% of solution

- Bumps were not quite closed
- Updated MIA online model could help
- Vertical dispersions in MIA and LEGO did not agreed well enough
- LEGO needs direct access to the dispersion measurement