Evaluation of Detector Background

2009/2/10 M. Iwasaki (Univ. of Tokyo)

for the s-Belle MDI group (KEK / Tohoku Univ. / Univ. of Tokyo)

Introduction

Super-KEKB → High luminosity experiment

- Remarkable features of Super-KEKB
- High beam current
- Strong dynamic-beam effect
 - ... squeezes the beam at IP and increases the emittance

(To take care of the dynamic-beam effect, IR design has been changed)

- Large beam size at final Q \rightarrow High power SR emission
- Place final Q-magnets closer to IP
- → These features directly related to the detector beam BG

To assure the stable detector operation, IR design based on the beam BG study is important

Place QCS magnets closer to IP

Current status of the MDI group

- <u>SR BG simulation studies</u> (Tokyo / KEK)

With the Super-KEKB design, much higher SR BG is expected

Critical energy is <u>14keV</u> SR size at IP is <u>3-7mm</u> for 5σ size beam (KEKB : 2keV and <5mm for 10σ size beam) \rightarrow Then we estimate the SR BG first

- Other BG sources

Beam-gas, radiative BhaBha, Touschek, ... Not yet

- HOM / mirror current heating studies (Tohoku / KEK) Just started!

Based on these studies, we'll design the IP region

SR BG studies

- In this talk, we show
 - 1.Upstream SR

1-1. Design of IP beam-pipe to avoid SR hits from HER
1-2. Study of the energy deposit to the IP beam-pipe
<u>2. Backscattered SR</u>
Estimate # of SR hit in the IR region

- For the SR BG study,

we construct the beam line simulation based on GEANT4. Upstream SR

Simple beam pipe + 1st layer SVD + B-field of Q-magnets Backscattered SR

Realistic beam pipe + SR data

1. Upstream SR BG study

1-1. Design of the IP beam-pipe to avoid SR direct hit

Beam pipe design

S.Uno

Relationship between s-Belle and Super-KEKB

In Super-KEKB, crossing angle will be increased : 22mrad \rightarrow 30mrad

Belle beam pipe (and SVD??) axis at Super-KEKB

- Belle solenoid
- Center of the LER and HER (7mrad from Belle solenoid)
- HER axis (22mrad from Belle solenoid)

IR magnet layout

HER simulation

LER beam-line simulation

LER simulation

Upstream SR energy

SR energy (at IP)

The SR energy from HER is very high (< ~100keV)</p>
→ We don't want the direct hits from HER SR at first

HER beam line simulation

2ndary particle production position @ IP

 5σ beam

HER beam line simulation

If we locate the beam pipe parallel to HER (22 mrad from solenoid) and put a 4mm SR mask, we can avoid direct SR hit from HER

We cannot avoid the SR direct hit if:

- Without HER side SR mask,
- Put the beampipe parallel to Belle solenoid (0mrad), nor
- Put the beampipe center of the LER and HER (7mrad)

1. Upstream SR BG study

1-2. Study of the energy deposit to the IP beam pipe

Energy deposit from upstream SR

Energy deposit from SR

 2σ beam

HER SR Mask <u>0.73kW</u> HER taper 0.69kW

LER

SR Mask 20W LER taper 75W IP beam-pipe 15W

We have ~1kW Energy deposit at 4mm height SR mask... (Max. limit to cool : 10~100(?)W / mm²) → SR mask may melt??

Heat at the synchrotron light mask T.Tsuboyama (KEK)

- The heat differential equation is solved by a 3D discrete finite difference method.
- The following model was made and calculated.
- The bottom surfaces are connected to a heat sink (0 °C)
- The other surfaces are heat insulated.
- Calculation was done with equal mesh size: 1 mm in x,y,z direction.

Material : copper is assumed (because of its good thermal conductivity)

Heat at the synchrotron light mask T.Tsuboyama (KEK)

- •The temperature distribution Δt for the center slice after equilibration (in one second) is shown below.
- •The temperature goes up to $\Delta t = ~450$ degree.
- The heat dissipation to the mask should be of order 100W.
 Next step: reliable calculation by ANSYS or a similar tool.

	SR (1kW) Mask																						
				('				×	457 424 344	299 275 225	212 196 164	166 154 131	145 135 114										
4	8	12	17	24	33	46	66	100	167	150	124	102	83	57	41	30	23	17	12	9	5	3	
4	7	11	16	23	31	41	56	77	100	100	90	78	64	49	37	28	21	16	12	8	5	3	
3	7	10	15	20	27	35	45	57	68	70	66	59	50	41	32	25	19	15	11	8	5	2	
3	6	9	13	17	23	29	36	43	48	50	48	44	39	32	27	21	17	13	10	7	4	2	
2	5	8	11	14	18	23	27	32	35	36	35	33	29	25	21	17	14	11	8	6	4	2	
2	4	6	9	11	14	17	20	23	25	26	26	24	22	19	16	14	11	9	7	5	3	2	
1	3	5	6	8	10	12	14	16	17	18	18	17	15	14	12	10	8	6	5	4	2	1	
1	2	3	4	5	7	8	9	10	11	11	11	11	10	9	8	7	5	4	3	2	2	1	

Energy deposit from HER SR

Why do we have so high energy deposit?

1. Increase the beam current

effect : x3

- 2. Change beam optics (QC2L)
 - x3 Beam size at the Q-magnet [↑]
 - x7 B-field of the Q-magnet ↑
 - Same magnet length
 - No-bending component $\ \downarrow$

Critical Energy @ QC2L : 2keV for 10σ beam (KEKB)

56keV for 10σ beam (super-KEKB) effect : x28

→ We have 3x28 ~ 100 times higher E deposit at super-KEKB

Current super-KEKB beam optics produces huge power SR

Total SR power produced at Q-magnet

- To check our simulation results, we compare the total SR power at the QC2 magnet

1. GEANT4 simulation

(For 2σ beam :corresponds to nominal Gaussian beam core) Total power = 3.3kW

2. Hand calculation (by Y.Funakoshi-san)

Total power = 2.9kW

- We also check that SR power produced at QC2 in our current KEKB is about 1/100 of super-KEKB, in GEANT4 simulation

2. Backscattered SR study

- SR hit to the beam pipe

Back scattered SR simulation

Clement Ng (U. Tokyo)

By constructing the realistic beam pipe in our simulation, we have studied the back scattered SR BG effect.

- Beam Pipe material 6mm Cu + 10um Au
- Construct $\pm 10m$ from IP
- Input SR data generated in the upstream SR studies

HER/LER SR simulation

C.Ng (Tokyo)

Back scattered photons at IP

HER IP region (E_{SR}>20keV)

Vertical scale is scaled for 1-bunch beam, Scale factor = 100

C.Ng (Tokyo)

There are 4 entries which may enter to the detector region (energy ~50keV) These are caused by SR photons produced at QC1/2L

We cannot evaluate the SVD occupancy because MC statistics is too small. After increasing the statistics, we'll study the SVD occupancy

Based on the GEANT4 simulation, SR BG has been studied

1. Upstream SR

- Design of the IP beam-pipe to avoid SR from HER

To avoid the SR direct hit, we should Locate the beam pipe parallel to HER (22mrad from Belle solenoid), and Put a 4mm height SR mask

Study of the energy deposit to the IP beam-pipe
 The energy deposit from HER SR will be ~1kW (SR mask) ~1kW (taper)
 1kW deposit to the 4mm mask makes ~500 degree temperature rise
 → It is very hard to cool the beam pipe...

2. Backscattered SR

We need more MC statistics to study in detail.

We try to minimize the BG effect in our beam-pipe design, but SR power is so high that we cannot cool the beam-pipe

<u>New super-KEKB machine parameters with lower SR power</u> <u>are highly appreciated</u> → See the next slide..

New super-KEKB optics

New super-KEKB optics has just been delivered

- Beam size at the Q-magnet
 - QC1L/QC2L: 1/2 of the current one
- B-field of the Q-magnet
 - QC1L : x1.6 of the current one
 - QC2L : same
- Same magnet length

In total, SR power is reduced to 80% (QC1L) or 25% (QC2L) of the current one

We'll re-estimate the SR BG based on the new optics

Back up

Beam line simulation

Based on the following programs, we construct the Super-KEKB beam-line simulation

- SAD

To get the geometry / element definition / Twiss parameters. SAD file with dynamic beam-beam effect from Funakoshi-san (Dynamic effect \rightarrow 5 times higher ϵ , 10 times smaller β in x)

- LCBDS

Beam line simulation <u>based on GEANT4</u> developed by K.Tanabe and T.Abe of U.Tokyo (for ILC/T2K)

At first, we just align the beam line components, beam pipe, and 1st layer SVD in the simulation

Beam line simulation setup

- Aperture of the Q-magnets ~ 5σ (= $5\sqrt{\epsilon\beta}$)
- Beam size 5σ (max = 5σ) or 2σ (max = 2σ)
- Beam shape : sqrt(x) shape

- The number of particles in a bunch HER : 4.1A / (1.6*10^-19)/(100kHz)/5000 = 0.5 *10¹¹ LER : 9.4A / (1.6*10^-19)/(100kHz)/5000 = 1.2 *10¹¹

Beam size @ IR Q-magnets

I

HER Beam			1	P		
HER	QC2L	QC1L	QCSL	QCSR	QC1R	QC2R
OLD	75.2mm (5σ _x)	31.1	11.0	4.4	30.3	74.5
New	35.4	16.5	14.4	6.3	30.1	69.0

LER	QC2L	QC1L	QCSL	QCSR	QC1R	QC2R
OLD	52.1mm (5σ _x)	29.0	2.9	15.1	52.2	63.9
New	34.4		2.9	10.7		66.3

Energy deposit from SR

Heat at the synchrotron light mask

- Simplest calculation: 1 Dim. model.
- Temperature increase is ΔT=P·L/S/σ, where P: power, L: length, S: area and σ: heat conductivity.
- Assumption: P=1 kW heat lost at the 3 mm diameter spot. S=πr²=0.07 cm². L = 0.3 cm (being half of the maximum length).
- Copper: σ =4.0 W/°C/cm, Tungsten: σ =1.7 J/°C/cm.
- Consequently, ΔT=1000*0.3/0.07/4 ~ 1200 °C for Cu and ΔT= 1000*0.3/0.07/1.7 ~ 2500 °C for W.
- 1 KW power dissipation at a 3 mm diameter heat spot is out of question.

HER simulation

LER beamline simulation

 2.5σ beam

Progress to date

Geant4 Beampipe Geometry Modelling

- SuperKEKB LER Downstream IR Beampipe

• Written according to AutoCAD design plan by Kanazawa-san

Synchrotron backscattering simulation - underway

 Merged with IP beampipe and synchrotron beam data constructed by Iwasaki-san

event for the simulation ~10⁸ event \rightarrow We need to scale 2*10² for a bunch

HER SR simulation (IP region)

C.Ng (Tokyo)

HER SR simulation (IP region: Back-scattered only) C.Ng (Tokyo)

LER SR simulation

C.Ng (Tokyo)

event for the simulation ~10⁸ event \rightarrow We need to scale 10³ for a bunch

Back scattered particles HER IP+Taper (E_{SR}>20keV) C.Ng (Tokyo)

Back scattered particles in IR are caused by SR produced at QC1L & QCSR ~2000 particles in IP region Mainly (97%) charged particle ← can ignore them?!

Back scattered particles LER IP+Taper (E_{SR}>1keV) C.Ng (Tokyo)

Back scattered particles in IR are caused by SR produced at QCSL Energy of back scattered particles is low

Dynamic beam-beam effect

Parameter search for smaller beam size Y.Funakoshi

	no b-b	I	nomina	ıl	higher emittance			higher βx*			even higher βx*			
v _{x0}		.503	.505	.510	.503	.505	.510	.503	.505	.510	.503	.505	.510	
ε _{x0} [nm]	Emittance ε (wo dynamic effect)								12	12	12	12	12	
β _{x0} ΄ [cm]	20	20	20	20	20	20	20	40	40	40	β (w	o dyr	c effect)	
Ψ _{x0}	0	.270	.270	.270	.135	.135	.135	.272	.272	.272	.273	.273	.273	
ε _x [nm]		81.9	<mark>צ (W</mark>	<mark>ith d</mark> y	<mark>/nam</mark>	<mark>lic ef</mark>	<mark>fect)</mark>	8.	64.3	46.7	82.3	64.4	46.8	
β _x ΄ [cm]		1.50	1.93	2.77	2.1	2.7	3.8	2.99	3.87	.53	β (w	ith dy	/nam	ic effect)
σ _x @ QC2RE [mm]	4.0	39.5	30.9	5 t	ime	s hi	gher	Έ,	10 tir	mes	sm	aller	⁻ βir	n x
N¢ [)yn	am	nic	effe	ect	at	Su	oer	-KE	EKI	B is	s ve	ery	strong

Beam size @ IR Q-magnets $v_x = .505$ (): 5 σ_x

	QC1LE	QC2LE		Q	C1RE	QC	2RE	QC	2LP	QC2RP
β _x *=20cm QC2RE:元	8.2 (41)	26.9 (134.5)	11.6 (58)		28.8 (144)		14 (73	4.7 3.5)	18.6 (93)
β _x *=20cm QC2RE- >IP	[*] =20cm 8.4 C2RE- (42)			12.0 (60)		20.7 (103.5)				
β _x *=40cm QC2RE- >IP	5.9 (29.5)	13.4 (67)	(4		8.5 2.5)	14.6 (73)		9 (4	.8 !9)	12.3 (61.5)
			QC	1LE	QC2LE	QC1	RE (QC2RE	QC2LF	P = QC2RP
Field	l gradient	T/m 1		.5.5 3.4		12.0		8.8	6.7	3.4
Pol	e length	m		.64	2.0	0.7	5	0.8	0.6	1.0
b bor	e radius	mm		25	50	48		90	80	40
C	urrent	AT	3	920	3400	110	50	28400	17100	1980
coi	il turns	/pole		3	8	3		16	15	3
Curren	t density of									
Septun	n conductor	A/mm^2		30	10	70		24	31	15
Field in	the area for	/								
couter-cir	culating beam	Gauss	$0\sim$	-0.65	$0 \sim -0.4$	$0\sim$ -	1.1 ($0\sim$ - 0.35	$0 \sim -0.85$	$5 0 \sim -0.35$

Table 3.3: Parameters of special quadrupole magnets

SR BG studies

- SR BG may affect to

Increase the vertex detector occupancy

To keep ~1% occupancy for pixel (readout 10μsec) or ~10% occupancy for strip (readout 150nsec) # of SR hits (E>50keV) < ~100hits/bunch Heat the IP beam pipe

- In this talk, we show
 - 1.Upstream SR
 - 1-1. Design of IP beam-pipe to avoid SR hits from HER
 - 1-2. Study of the energy deposit to the IP beam-pipe
 - 2. Backscattered SR

Estimate # of SR hit in the IR region

- For SR BG study,

beam line simulation based on GEANT4 is constructed

Upstream SRSimple beam pipe + 1st layer SVD + B-field of Q-magnetsBackscattered SRRealistic beam pipe + SR data