Belle 2008

14th KEKB Accelerator Review Committee, 9–11.Feb.2009

中村 勇/KEK

Belle 2008 Run

- □ Two periods (~ 8 months.) Feb.11 – Jun.30, Oct.16 – Dec.22
- □ Five Different Energy Points
- Efficiency ~ 95 % (Troubles not included)
- □ Troubles (~no effect to analyses)
 - CDC HV (0.5% dead, repaired)
 - ECL Readout (2 ch no signal)
 - KLM Readout (2 layers down for 10 days)

Belle 2008 Improvements

- □ Trigger Data read out by COPPER
- □ New Global Trigger Decisioin Logic
 - upto 64 trigger input
 - upto 160 different trigger output
 - flexible injection veto
 - ANN trigger test
 - new Bhabha trigger test

Belle Upgrade R&D Highlights

Belle Upgrade Concept

- □ More physics events (\propto Lumi \Rightarrow ×10 trigger Rate O(10) kHz)
- □ More background (\propto Beam Current × Vacuum \Rightarrow ×20)

- □ Faster and Finer
 - Small-Cell Drift Chamber, Pixel Detector
 - "Deadtimeless" Pipelined readout
 - More Timing information
- Better PID

Baseline Design

Vertex Detector

Belle vertex detector

20

10

- Measure the position of B decay vertices. •
- 4 layers (Belle) \rightarrow 6 layers (Super Belle) .
- Outer radius 10 cm \rightarrow 14 cm .
- Better tracking efficiency/ self tracking
- Larger acceptance (x1.5 than Belle) for Ks
- Silicon strip layer (Layer 3-6) •
 - R=4, 8, 12, 14 cm (Design not finalized)
 - 300 µm thick, double sided silicon strip detector.
 - Readout: APV25 ASIC
 - Developed for the CMS silicon tracker.
 - Radiation hard, short shaping time and pipelined readout.
- Pixel layer (Layer 1-2) ٠
 - Pixel detector with DEPFET technology
 - · Originally developed for the ILC vertex detector.
 - Modified readout scheme because the beam bunch train structure is different.
 - Thinned to 50 µm in order to minimize the multiple coulomb scattering.
 - Less material thickness than other active pixel technology.

T.Tsuboyama

DEPFET Pixel Detector

- DAQ scheme
 - KEKB: Collision occurs every 2 nsec.
 - Continuous, high-bandwidth readout is necessary
 - Column parallel, 4-fold readout is necessary in order to readout a sensor < 10 μsec, KEKB revolution.
- Immunity to total integrated dose.
 - DEPFET sensor.
 - Operation voltage shift due to induced charge in the gate silicon oxide.
 - For 7.9 Mrad
 - -Threshold voltage (Vth): 0 \rightarrow 13 V.
 - -Slope: 100mV/decade \rightarrow 650 mV/decade.
 - Variation of V(th) : ~ 1V.
 - A new batch with thinner SiO₂ is in preparation.
 –Far better result is expected from previous experiences.
 - Support chips
 - DEPFET needs high-voltage clocks for readout and reset the charge in the cell.
 - 10 V clock can be generated with the 0.35 μm technology by a new circuit design.

T.Tsuboyama

Silicon Strip Detector

Silicon Vertex detector group KEK, Niigata U., IFJ Krakow, HEPHY Vienna, Hawaii U., JSI Ljubljana, Kyungpook U., Tata Institute, Karlsruhe U., Tokyo U., Osaka U.

- Chip-on-sensor configuration
 - Both sides of DSSD sensors are readout with single flexible APV25 hybrid.
 - Parasitic capacitance is minimized resulting a high S/N.
- Reconstruction of hit timing using waveform digitization.
 - The analog date in the APV25 pipe line is fitted to a waveform.
 - Time resolution as good as 2nsec has been achieved.
- Sensor R&D
 - Detector thickness < 300 µm for reasonable vertex resolution.
 - Sensors from 6" allow design flexibility.
 - DSSD source other than HPK?
 - Companies: Micron, SINTEF
 - Research institutes: Kyungpook Univ., Tata Institute.

Barrel PID TOP (Time-Of-Propagation)

60

- □ Complete/realistic prototype
 - MCP-PMT
 - Focusing Mirror
 - Container
 - Amp+CFD (constant fraction discriminator)

□ Test at KEK Fuji beam line (2 GeV e⁻)

□ Timing Resolution as expected

Endcap PID ARICH (Aerogel Ring Image CHerenkov)

- □ Focusing Radiator
- Six 144ch HAPD (Single Photon Sensitive)
- □ dedicated readout ASIC
- □ Test at KEK Fuji beam line (2 GeV e⁻)
 - Cherenkov Ring observed
 - 6 p.e./track
 - 13.2 mrad Resolution obtained

ECL

- **TKO** Waveform Digitizer
- U Waveform Fitting in COPPER
- □ Installed in Endcap for Test
 - Took Data for 1 week
 - Energy Reconstruction confirmed
- □ VME Version first prototype

Belle Physics Highlights

from our 52 published Journal papers and 32 conference contribution papers

Pure Leptonic B decay $B \rightarrow \tau \nu$ with semileptonic Tag

- □ Confirmation of $B \rightarrow \tau \nu$ search Hadronic Mode, PRL 97, 251802 (2006)
- □ require semileptonic decay in other B
 - exclusive reconstruction of $B \rightarrow D^{(*)} \ell \nu$
- \Box 657 Million BB
- □ No additional activity in ECL

$$N_{\text{sig}} = 154^{+36}_{-35}(\text{stat.})^{+21}_{-22}(\text{syst.})$$
$$\mathcal{B}(B \to \tau \nu) = 1.65^{+0.38}_{-0.37}(\text{stat.})^{+0.35}_{-0.37}(\text{syst.}) \times 10^{-4}$$

 \Box 3.8 σ excess

consistent with hadronic tag result

□ constrain in SUSY parameter

" $\Upsilon(5S)$ " $\rightarrow \Upsilon(nS)\pi^+\pi^-$

PRL 100, 112001 (2008)

- □ Measurement of Process $e^+e^- \rightarrow "\Upsilon(5S)" \rightarrow \Upsilon(nS)\pi^+\pi^-$
- Anomalously large width observed only in "Υ(5S)"

	Γ_{total}	$\Gamma_{\Upsilon(nS)\pi^+\pi^-}$
Υ(2S)	0.032 MeV	60 keV
Υ(3S)	0.020 MeV	9 keV
Υ(4S)	20.5 MeV	19 keV
"Y(5S)"	110 MeV	590 keV

- ⁵ Dedicated scan performed
 - 10 \sqrt{s} points
 - 7.6 fb⁻¹
 - □ Mass Peak at 10889.6±2.3 MeV
 - \Box different from $\Upsilon(5S)$ (10865±8 MeV)
 - □ Analogous to Y(4260) for charmonium

Properties of $B \rightarrow K^{(*)}\ell^+\ell^-$ decay

- □ Loop process \Rightarrow sensitive to New Physics
- □ Major Topic in Super B Factory
- □ Many K, K^{*} decay modes K⁺ π^- , K⁰_S π^+ , K⁺ π^0 and K⁰_S
- \Box + e⁺e⁻ or $\mu^+\mu^-$
- \bigcirc 657 million BB

v1 $\Box \mathcal{A}_{FB}$ deviates from the SM?

- □ Isospin symmetry consistent with 0?
- Need More Luminosity

- \Box both more than 4 σ significant
- □ These significant deviations indicate,
 - missing knowledge of strong interaction,
 - Something "unknown" in loop diagram, or
 - Possible New source of CP violation

Inclusive $B \rightarrow X_s \gamma$

□ Full usage of 657 milion $B\overline{B}$ □ E_{γ} Cut lower to 1.7 GeV

\Box moments of E_{γ} spectrum

$$\langle E_{\gamma} \rangle = 2.281 \pm 0.032 \pm 0.053 \pm 0.002 \text{ GeV}$$

 $\langle E_{\gamma}^2 \rangle - \langle E_{\gamma} \rangle^2 = 0.040 \pm 0.016 \pm 0.02 \text{ GeV}^2$

important input for HQET parameters

 \Box crucial for determination of V_{cb} , V_{ub}

